*1 r Fermi National Accelerator Laboratory
FERMILAB-Pub-92/17
(NHM-91/003)

HEPnet
NHM TECHNICAL NOTES
Analysis of X Protocol and the
Underlying Networking Interface

F. Abar

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

January 1992

Operaled by Universities Research Association inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy

Disclai

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their emplayees, makes any warranty, express or implied, or assumes any legal liability or
responstbility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

Analysis of X Protocol and the
Underlying Networking Interface

Farhad A. Abar
Fermi National Accelerator Laboratory
Batavia, IL

Abstract

The X Window System is a network transparent portable window system that is
being adopted as a standard by nearly every workstation manufacturer. X Window
System provides the environment for distributed graphical applications where the
application (X client) and its display (X server) are separate process entities pos-
sibly running in different machines. The communication between the application and
the display is standardized through a well-defined protocol known as X Protocol
over a reliable byte stream network interface.

The physical separation between the server and client can introduce significant per-
formance degradation due to communication delays. These delays are characterized
as latency delay which results from trip delays between the server and client and
transmission delay which results from volume of data communicated through net-
works between server and clients.

This paper investigates and categorizes network load and delay associated with X
Window System as implemented under 4.3BSD operating system.

A client-server distributed application is developed to emulate network activities be-
tween the X server and client. Based on this application a collection of measure-
ments are conducted to estimate the delays associated with a series of common X
requests. The measurements are first done in a LAN environment with server and
client running in separate Ethernet subnets. Subnets connectivity is established by
routers and the organization backbone Ethernet. The measurement procedure is ex-
tended to examine server and client network characteristics in a WAN environment
which includes the ESnet national backbone.

Based on the insight from the experimental data an analytical model is constructed
to help predict X Window System performance in more general terms.

This Page Intentionally Left Blank

Table of Contents

1 Objective ..coovivirvervririeememiniiceenniaiae,
2 X Protocol Introduction

...

...

2.1 X Architecture, Client-Server Model.....c.coorviiviiiiiiimiiniinniincinees

2.2 X Protocol Definition
2.3 X Request .c.ccoerrvviriiiiiininnnnns
Format. .cocceeeieeiirearrernrnsasssares

Sample Error......cccccceeiieenn.
2.7 A Sample X Session............
3 X Protocol Communication...........

...

...

...

...

...

...

...

...

...

...

...

...

...

...

3.1 X Protocol Network Calls under 4.3BSD......ciiivininniiinnnnns
X Server Networking Interaction.........cccciveiiiiniiiiiiiiniiennnsssranne.
X Client Networking Interactioncccoeeimciaimiiiiiiiiis

3.2 X Client-Server Emulation:

ML e e e

4 X Protocol Network Load Measurements . ..ocioiiiiiiirniirmieearerenreniecnencnsnas

4.1 Objective. v iiriranrearcnrvininas
4.2 Procedure.....covveeiimiiivnvrirnnens

XSCOPC.eeneeariiiiiiiraiarssinneises

...

...

...

...

4.3 Examples of Common X Client Requestsomveimmiiiiiiiiiiini

Opening the Display
Creating Windows

...

...

Changing Window Attributesc.comiiiiiiii s

Mapping 2 Window.............

Copying Window to WiINdow ...cccoevivimiiiiiiiiiiii e

Moving Window ...ccoevvnennneees
Resizing Window
Moving a Pointer................

Creating Graphic Resources

Destroy Sub-windows...........
Clearing Windows................

Getting Window Attributes

...

...

O O O 0 @ o~ A ke

—
o Qo

10
11
11
11
11
14
16
17
19
21
23
23
23
23
24
25
26
26
27
27
27
28
28
28
29
29
29
30
30

i

Freeing Graphic Context......ooovrrriroiriiciniciiininineirnecnciiiiaiae
Destroying Windowc......ee.e. O P PSUSRPPIt

4.4 Examples of X Graphical Primitivesccooeiiiiniiiiiiinnn
Drawing Points..ccmimi s e
DTawing LiNes ccococierririierciiisii s sr s rrnn st e e ann e
DIaWing Text coveeieiai i iiireerr e s visss et res s s s es e rs e n et r e
Drawing Image ..cccooivmiieiiiiiiiiii et e

Getting Image. ... i s

5 X Protocol Network Delay Measurements........occcveiiierimnicncnnmnninsrns,
O S0)T 8 TR U PRI OTIOPIP PRI

5.2 Procediile.cooiiiiiiceieire e vt a s erar s g st s sas e e

5.3 LAN Configuration: X Protocol Network Delay Estimates............

5.4 WAN Configuration: X Protocol Network Delay Estimates...........

6 Network Traffic Profile: LAN Configuration....ccooeeoveiiiiiiiiiiiniiiiieniannnn,
6.1 OB CEIVE. eniireeccieiiiieiri et rrer st e e r e s e e

6.2 Network Monitoring Tool: SNMP ..o

5.3 PrOCEdUTE. .. iiieiueerenrerermmnr e eemariraaerrmaseersesrr st s rressrrressebastetassrasassarnes

6.4 Network Statistics on Router ...
Input Traffic Profile......ccooiiiiiiiiiiiininiiiii e,

Output Traffic Profile.....cooeiiiiiemiimieniiiiiiieci e

6.5 Network Statistics on Router Ilccooiiiiiiimiimiiiiiiiicni
Input Traffic Profile......cooiiimriiiiiii e

Output Traffic Profile......cccoovimeiiimririnri

7 Network Device Maximum Throughput Measurements.........ccccceeviniein
T.1 ObJeCtIVe...cioviereiiiiiiiriire i a s b s s s s

7.2 Flooding Experiment Procedure........ccociviiimmiiiiimiiriiinssescne,

7.3 Flooding Experiment Results.........ccccooiiiiiiiiiiiiiimnnniinenene

8 Analytical Modeling of LAN Configuration......cooviiiiniiiiin
B.1 ObJeCtiVe..uiuiueeiiiiiiiiiii i s s

8.2 Queuing Model Introduction.......cccccceeeiiiriiiicmimiimiiiiie e
M/M/1 QUEUE c.ecreieeireriieeiintie et ee s st st e s e st ar e s e e e s anns
Networks of M/M/1 QuUeUES....ccccovevriviiiiiiiiiinienin s

8.3 LAN Configuration: A Network of M/M/1 Queues.......ccccoiieieanne
8.4 Routers Queueing Delay ...ccccooriiiiiiiii e
Poisson Arrival Rate AsSsumption.........ceeeocremmiicimmiiiiicieecnen,
Exponential Service Time ASSUMPEION c.ooovviiviiiiinemiiiciiiieiienees
Quening Delay on Router-l ...
Queuing Delay on Route-IL..ooi s

Total LAN Configuration Queuing Delayccoooviiiiiniiin

8.5 Communication Layers Delay......cccooiiiiiiin
8.6 Ethernet Channel Acquisition Delay............. errreeeeeeeonaa e raars
Average Transfer Delay in Subnet 1.......iiiiviiiiiiiin
Average Transfer Delay in Subnet 2 ...
Average Transfer Delay in Backbone Ethernet ...

9 Model Valldabioncoceireiiiiiirmmniecrecs e cemeaene e e r e bisr s s e sann e na s anmsaaeras

30
31
31
31
32

33
34
35
35
35
36
38
40
40
40
42
43
43
45
45
45
46
48
48
48
51
53
53
53
53
54
36
57
57
537
57
57
57
58
58
60
60
61
62

il

LO COMCIUSION ceriveirirrisocvesunsertererenaceneeanenaransrsvassannssasssnsssnsnssrsnrnsssrrsnrasisesssss 63

11 Future Direction.....coocivevvvevinnns PP 64

L2 RO rOICES cemniteireneeinseeeaneieesesentsnnsenarsnasnsssenssissstnastnnssesssnsnsasatrenssrnsnrnsanensasne 65

13 BiblIography -...ovcicimiiiiiiiiiiiiiiieiis it 66
Appendix A: emulX: X Client-Server Emulator.........n A-1
Appendix B: X Requests synopsis and Raw Data................ B-1
Common X Setup Calls..ccccorierirviimmmriiiiiiimic e B-1

Graphical Primitives X Callsu..cuuiciviicroiiiiiiininnn B-9

Appendix C: X Requests Listings and Descriptions............c.......... C-1
Colors and Colormaps....cooovveiiimmmuiiiiiiie et C-1

I SOTB e ee e ierensieeerransreanrernnstntassaassanasses mnsseesssrennebbisisstasssesnanssnsnnnsnnsas C-4

Drawing Graphics...ooovcimmreeiim i C-4

oW OIIES vouneee s eiiieiersiveternsssetasuaena st rnanssueseasaassrnrensbussarasasnraranseannisaneinenss C-6

The Graphics COonteXt...ciuiiieuriruirmrrmriiistnmeriiaoreerenererr b s C-9

05T Y S USSP UUU PO C-10

Interclient COMMUNICATION teeverenereuiuiirrrcnriisrrrrrsessessnasmaranissssenecnes C-11

Keyboard and Pointer.......cciiimmmiiieinnivrie e C-13

S@CUTTIEY +euuveuenrrerarnseererrertnrnesstnsoeais sesbannsaan e aseasane e ndsrbesinbbtasbensensaes C-17
WindowCharact eristies e vierrearier i i s e e e C-17

Window Manipulation by the Clientoocoooviiviiiiiiiiiinnn C-18

Window Manipulation by the Window Manager........ocooiviinnnnnnine C-19

Appendix D: Listing of X Requets with Replies...................... D-1
Appendix E: X Events ... E-1

Appendix F: X Errors...i i F-1

This Page Intentionally Left Blank

13:
14:
15:
186:
17:

18:
19:

List of Figures

Displays, Screens, and Windows Definitions in X Protocol
Server, Client, and Window Manager in X Protocol

A Sample X Client-Server Session

X under TCP/IP Suite of Protocol

X Protocol Encapsulation under TCP/IP and Ethernet
Protocol

X Server and Clients Queues

X Server and Client Calls under 4.3BSD

emulX Application Network Interaction

X Network Load Test Bed

Schematic of the LAN Configuration

Schematic of the WAN Configuration

Schematic of a Network Configuration Managed by
SNMP Protocol

SNMP Network Statistics for the Interface Layer
Average Input Packet-size Distribution on Router-l
Average Input Packet-size Distribution on Router-II
Flooding Experiment Test Bed

Router-I Throughput Characteristics in Flooding Experi-
ment

Analytical Modeling of LAN Configuration

Test Setup to Measure Communication Layers Delay

12
15
16

17
18
22
24
36
38
41

42
44
46
49
52

56
59

This Page Intentionally Left Blank

Table

Table

Table
Table
Table
Table

List of Tables

Average Network Load and Delay for X Client Requests in
a LAN

Average Network Load and Delay for X Client Requests in
a WAN

Router-I Input Traffic Profile Statistics

Router-I Output Traffic Profile Statistics

Router-II Input Traffic Profile Statistics

Router-II Output Traffic Profile Statistics

37

39

44
43
45
46

1. Objective

The X protocol as a tool for the distribution of graphical displays is fairly com-
plex. Its impact on today’s Local Area Networks {LAN) and Wide Area Networks
{WAN) with very limited bandwidth is not clearly understood. By contrast, the X
architecture as a client-server model is based on few premises that this paper aims
to explain.

The main focus of this paper will be to;

1. illustrate the impact of X as a layer on top of the Internet protocol
suites,

2. examine the underlying networking activities present during X applica-
tions,

3. provide an initial assessment on the network loads and delays associated
with a set of more frequent X activities over a LAN and a WAN con-

figurations, and

4. create an analytical model to predict X Window System performance un-
der various network configurations.

2. X Protocol Introduction

Distributed computing paradigms as computing models have gained considerable
popularity with the emergence of powerful and cost effective desktop computers
[LIDINSKY]. According to this model of computing the applications are not
restricted in using local resources and they should be able to, transparently to the
user, access resources located throughout the network. The computing task is
divided between the local resource and the remote resource, where the remote
resource takes on the responsibility of a server, accepting and servicing requests
from one or more of processing entities {clients) scattered throughout the network.

One key advantage of this distributed model is that each part of the software can
be developed independently, hardware and operating system wise, of the others. In
a heterogenous computing environment this makes available the services of the spe-
cial purpose hardware and software.

The network of near future is modeled and constructed to take advantage of dis-
tributed computing and cooperating processing paradigm. Open Network Computing
Network File System (ONC/NFS) originated by Sun Microsystem, Open Software
Foundation Distribute Computing Environment {OSF/DCE) and MIT’s X Window
System Protocoel are examples of this emerging technology.

Lidinsky pointed out that some of key properties that a network must have in or-
der to adequately service client-server systems are:

o Low response time (i.e., network delays)

e Able to handle bursty traffic efficiently or at least cost effectively

Simple network protocol

Low intrinsic bit error rate (this allows simple protocols)

e Privacy and security

The X Window System, or X, is a network-transparent window system. With X,
multiple applications can run simultaneously on a bitmap display!. This has been
done before (e.g., kernel based systems such as Windows 3.0 and MACOS) but not
in an open environment with high emphasis on portability to many different brands
of hardware, from PCs to supercomputers. Network transparency means that ap-
plication programs can run on machines scattered throughout the network. X allows
applications to be device-independent, which eliminates the need for rewriting and
recompiling applications in order for them to work with new display hardware.

The X Window system provides a hierarchy of resizable windows and supports high
performance device-independent graphics. The rost distinguishing aspect of X as

l'In bitmapped graphics {also referred as raster graphics), each dot on the screen (called a pixel) cor-
responds to one or more bits in memory. Programs modify the display simply by writing to display
memaory.

compared to other approaches such as MACOS is that it is based on an
asynchronous network protocol rather than on procedure or system calls.

In the X protocol a display is defined as a workstation consisting of a keyboard, a
pointing device such as a mouse, and one or more screens. Multiple screens can
work together, with mouse movement allowed to cross physical screen boundaries.
As long as multiple screens are controlled by a single user with a single keyboard
and pointing device, they comprise only a single display.

The bitmapped screens are controlled via the X protocol. For better screen utiliza-
tion a screen can be divided up into smaller areas called windows. A window is a
rectangular area that works in several ways like a miniature screen. Each window
on a screen running X can be involved in a different activity. Figure 1 provides
the graphical representation of displays, screens, and windows in X protocol.

Screen 2

window

Screen |

window

Figure 1: Displays, Screens, and Windows Definitions in X Protacol

The way a kernel-based window system operates is inherent in the window system
itself. By contrast, the X Window System concentrates control in a window
manager. The window manager largely determines the look and feel of X on a par-
ticular system. The window manager is just another X application except that by
convention it is given special authority to control the layout of windows on the
screen.

X applications can be written solely with Xlkb. Xib is the C library which includes
a low level procedural interface to the X protocol. They could also take advantage
of higher level subroutine libraries known as toolkits. Toolkits implement a set of
user interface features such as menus or command buttons (referred to generically
as toolkit widgets) and allow applications to manipulate these features.

To give the reader an idea of how efficient the X protocol is, "redrawing a normal
80x24 character terminal window using the X protocol would take about 2 seconds
of network time at 9600 baud” (NYE|. This caicnlation takes into account that the
X protocol requires some information in addition to the character codes that a
hard-wired terminal requires. To show the efficiency of the of the X protocol, a
hard-wired terminal would take 80% as much time to refresh an entire screen of
the same dimensions at the same serial speed [NYE|.

For the cases where a graphics image is being redrawn (as opposed to characters)
performance is often limited more by the time required to draw graphics than by
the overhead in the protocol.

2.1. X Architecture, Client-Server Model

Most window systems are kernel-based; that is, they are closely tied to the operat-
ing system itself and can only run on a discrete system, such as a single worksta-
tion. The X Window System is not part of any operating system, but is instead
comprised entirely of ”user-level” programs. The architecture of the X Window Sys-
tem is based on a client-server model. The system is divided into two distinet
parts: display servers that provide display capabilities and keep track of user in-
put, and clients: application programs that perform specific tasks.? The client
programs make requests that are communicated to the hardware display by the
server. For instance, client software could be running on a powerful remote system,
and all the user input and displayed output occur on the PC or workstation serv-
er.

X is a network-oriented windowing system. An application need not be running on
the same system that actually supports the display. While many applications will
execute locally, other applications may execute on other machines, sending requests
across the network to a particular display and receiving keyboards and pointer
events from the system controlling the display.

X is one component in an overall distributed systems architecture. Distributed ap-
plications based on this architectural model are separated into two autonomous and
independent yet co-operative softwares modeled as server and client. In this model
of computing the computing task is broken up (server and client}) and distributed
to different systems in a heterogenous computing environment. The server and the
client then communicate with each other (send messages) with an agreed set of
protocols by means of an underlying network connection.

The following is the description of some of the terminology used in X literature
and Figure 2 provides a graphical representation of X server, X clients, and X
Window Manager.

2){ defines '‘client” and ‘‘server!’ opposite to the way other distributed systema such as ONC/NFS define
these terms

~ ZHent
Zlent Sllent Application 5
Application “winaow Manager)
Taolkit
<lib ¥i1p *lib

A ‘Window System
arotocol regquests are
sent from Chents

WWW/WWMMWM%MMWWMWWMZ

. A reliable
i Zyents and rephes

are oassed back Lo byte

Clients stream
network
transpert

X Display layer
________________ |

X Server running on 10cal Rast

Device Orivers

Screen

1
!
1
|
1
|
|
|
|
|
|
|
|
1
1
|
|
1
!
|

Figure 2: Server, Client, and Window Manager in X Protocol

[n X the program that controls each display (the physical device) is known as a
server. The terminology is different from other well-known servers such as file or
print servers where the server is remotely accessed across the network. In X
protocol server is the local process® that interact the client which may be running

locally or remotely.

The X display server is a program that keeps track of all input coming from input
devices such as the keyboard and mouse, and input from other clients that are
running. As the display server receives information from a client, it updates the
appropriate window on the display. The display server may run on the same com-
puter or on an entirely different machine than a client.

Servers are available for PCs, workstations, and even for special terminals (X ter-
minals) with an integral Ethernet network interface, which may have the server
downloaded from another machine or stored in ROM.

3A “local” process is a process running on the machine into which the user is physically interacting. A
‘‘remote’” process on the other hand rume on a machine which is connected via some communication paths
or network to the machine where the user is physically interacting.

The server is typically made up of a device-independent layer and a device depend-
ent layer. The device-independent layer includes code that is valid for all machines.
The device-dependent part must be customized for each hardware configuration.

The server acts as an intermediary between user program (called X clients or X
applications) running on either the local or remote systems and the resources of
the local system.

The server performs the following tasks:

o Allow access to the display by multiple clients.
o Interprets network messages from clients.

e Passes user input to the clients by sending network messages.

Does two-dimensional drawing-graphics (that are performed by the dis-
play server rather than by the client).

The server is designed in such away as to never trust clients to provide viable or
executable data. In situation where the sever has to wait for a response from a
client, it must be possible to continue servicing other clients. Therefore, the server
is designed so that it can interact with the client in non-blocking I/O. This way a
bad client or a network failure could never cause the entire display to hang.

Clients are applications that communicate with the server by means of calls to a
low-level library (Xlib) implementing X protocol. Xlib provides functions for con-
necting to a particular display server, creating windows, drawing graphics, respond-
ing to events, and so on. Xlib calls are translated to protocol requests that are
passed either to the local server or to another server across the network. zterm,
an X based terminal emulator, zcalc, a calculator utility, and zclock a clock utility
are examples of X clients.

In practice, each user is sitting at a server and can start applications locally to
display on the local server or can start applications on remote hosts for display on
the local server, if the remote hosts have permission to connect to the local server.

In the process of designing the X protocol, much thought went into the division of
responsibility between the server and the client, since this determines what infor-
mation has to be passed back and forth through requests, replies, and events.
Scheifler and Gettys provide an excellent source of information on design of the X

protocol [SCHEIFLER].

The decisions ultimately reached were based on portability of client programs, ease
of client programming, and performance.

2.2. X Protocol Definition

X protocol is what defines the X Window System. It is designed to allow many
different types of machines to cooperate within a network and to communicate all
the information necessary to operate a window system over a single asynchronous
bidirectional stream of 8-bit bytes. This was one of the major innovations in the
X design.

The X protocol can be implemented using a wide variety of languages and operat-
ing systems. Xlib is the C language implementation of X protocol. There is also a
Lisp interface. A program in any programming language that can generate and
receive X protocol requests can communicate with a server and be used with the X
Window System. At present, Xlib is the most popular programming interface used

with X,

The protocol basis and portability of the X window System is especially important
today, when it is common to have several makes of machines in a single network.

What the X protocol specifies is the X packet structure and the information within
the packets that gets transferred between the server and client in both directions.
The same protocol is also used when the server and client are running on the
same machine. However, in this case information is transferred via some internal
channel instead of the external network.

The X protocol specifies four types of messages that can be transferred over the
network. requests are sent from the client to the server, while replies, events, and
errors are sent from the server to the client.

Padding bytes are required because each network packet generated by X is always
a muitiple of 4 bytes long, and all 16- and 32-bit quantities are placed in the
packet such that they are on 16- or 32-bit boundaries. This is done to make im-
plementation of the protocol easier on architectures that require data to be aligned
on 16- or 32-bit boundaries. Length of data in the X protocol are always specified
in units of 4 bytes.

Any events caused by executing a request from a given client must be sent to the
client before any reply or error is sent.

The foilowing subsections provides the definitions of these four types of messages
along with their format, size, and an example of each message type according to
MIT X Consortium Standard.

2.3. X Request

A request is generated by the client and sent ‘to the server. A protocol request can
carry a wide variety of information, such as specification for drawing a line or an
inquiry about the current size of a window. A protocol request can be any multiple
of 4 bytes in length.

Format

Every request consists of four bytes of a header followed by zero or more ad-
ditional bytes of data. The header contains an 8-bit major opcode, a 16-bit length
field expressed in units of four bytes, and a data byte. The length field defines the
total length of the request, including the header. Unused bytes in a request are not
required to be zero. Major opcodes 128 through 255 are reserved for extensions.
Every request on a given connection is implicitly assigned a sequence number by
the server , starting with 1. This sequence number is used in replies, error, and
events.

Sample Request

The AllocColor request specifies which colormap the client wants to use, and the
red, green, and blue values for the desired color.

of Brtes Type Valuee Description
1 84 opeode
1 unused
2 4 request length
4 COLORMAP colormap ID
2 upsigned int red
2 unsigned int green
2 unsigned int blue
2 padding

Maximum-request-length specifies the maximum length of a request, in 4-byte units,
accepted by the server. This limit might depend on the amount of available
memory on the server. The server simply discards the requests longer than this
limit. Since the field length is a 16-bit value and is in units of 4 bytes, the max-
imum request size is 262,140 bytes.

Maximum-request-length will always be at least 4096 (e.g., requests of length up to
and including 16,384 bytes will be accepted by all servers).

Appendix C provides a listing of all the X protocol requests with brief description.

2.4. X Reply

A reply is sent from the server to the client in response to certain requests. Not
all requests are answered by replies - only the ones that ask for information. Re-
quest that specify drawing, for example, do not generate replies, but requests that
inquire about the current size of a window do. Replies can be any muiltiple of 4
bytes in length, with a minimum of 32 bytes. There are no requests that some-
times have replies and other times do not. Replies are always immediate. If the
client is a little slow at reading data from the network, the server can get an er-
ror from the underlying reliable protocol entity (e.g., TCP) indicating that the net-
work was unable to transmit all the data.

Format

Every reply consists of 32 bytes followed by zero or more additional bytes of data.
Replies must be at least 32 byte tong. The additional data is stored after the 32
bytes. Every reply contains at least one byte of reply opcode, one data byte, a 16-
bit sequence number of the corresponding request, and a 32-bit length field in units
of four bytes. The length field specifies the length of additional data after the first
32 bytes.

Sample Reply

Upon receiving an AllocColor request from a client, the server forwards the follow-
ing reply to its client:

of Bytes Type Yalues Description

1 1 reply opecode
1 unused

2 unsigned int sequence number
4 [} reply length
2 uneigned int red

2 unsigned int green

2 unsigned int blue

2 padding

4 uneigned int pizel value
12 padding

As one can see the reply length is set to zero since there is no additional data
beyend the minimum required 32 bytes.

A protocol request that requires a reply is called a round-trip request. Round-trip
requests have to be minimized in client programs because they lower performance
when there are network delays.

Appendix D provides the format and a listing of all the requests that have replies.

10

2.5. X Event

An event is sent from the server to the client and contains information about a
device action or about a side effect of a previous request. All events are stored in
a 32-byte long structure to simplify queueing and handling them.

The X server is capable of sending many types of events to the client, only some
of which most clients need. X provides a mechanism whereby the client can express
an interest in certain events but not others. Not only does this prevent wasting
of network time on unneeded events, but it also speeds and simplifies clients by
avoiding the testing and throwing away of these unnecessary events.

An event is sent from the server to the client and contains information about a
device action (keyboard entry) or about a side effect of a previous request (map-

ping a new window on the screen).

Format

Events are 32 bytes long. Every event contains an 8-bit type code. The most sig-
nificant bit in this code is set if the event was generated from a SendEvent re-
quest. Event codes 64 through 127 are reserved for extensions. Every core event
(with the exception of KeymapNotify) also contains the least-significant 16 bits of
the sequence number of the last request issued by the client that was processed by
the server.

Sample Event

From the client’s point of view, the only true indication that a window is visible
is when the server generates an Expose event for it. The following is the Expose
event, as sent from the server:

of Bytes Type Values Description

1 1 event code
1 unused

2 unsigned int sequence number
4 V¥INDOW window

2 unsigned int x

2 unsigned int b 4

2 unsigned int width

2 unsigned int height

2 unsigned int count
14 padding

Appendix E provides a listing of all the X11 protocol event types accompanied by
a brief description.

11

2.6. X Error

An error is like an event, but it is handled differently by clients. Unlike events,
which are queued by the client library to be read later, errors are dispatched im-
mediately upon arrival te an error-handling routine by the client-side programming
library. Error messages are the same size as events (32 bytes).

Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error
codes 128 through 255 are reserved for extensions. Every error also includes the
major and minor opcodes of the failed request and the least-significant 16 bits of
the sequence number of the request.

Sample Error

As an example, lets say the client sends a request to draw a line to the server
but gets the window and GC arguments reversed. The following is what the server
will return as a BadWindow error report;

of Byrtes Type Values Description
1 3 error (always zerc for error)
1 3 code (Bad¥Window
2 unsigned int sequence number
4 unsigned int bad rescurce id
2 unsigned int minor opcode
1 unaigned int major opcode
21 padding

Error are basically treated just like events all the way to the routine in the client
library that receives them. It is at this point that they are sent to the error-
handling routine instead of being queued.

Appendix F provides a listing of all the Error reports with a brief description.

2.7. A Sample X Session

The following section describes what happens over the network during a simple ap-
plication that creates a window, allocates a color, waits for events, draws into the
window, and quits, This example uses three of the four types of X network mes-
sages as they would occur in an application. The fourth is the error. The sample
X server client session is illustrated in Figure 3.

Here are the network events that will take place during a successful X client ses-

sion:

1. Client opens connection to the server and sends information describing
itself.

12

Sent by Client Network Sent by Server

2) Connection accepted: reply describes server

1) Send opening mrormatloﬁ.\
[P~
|~ Connection rejected: reply reasen

3) Create Window reque
4) AllecCotar requesiih
e

1
5) Createcl requesiiy
7ytapwindow recuedil].
8) send all requests,
walt for expose
event..

]

I S).. Reply Lo Allocgior (contains pixel value)

mr- M

:. §) .Expose event generatec as a

result of mapping window
10) PolyLine request..
1) send ail requests,
walt for expose
event.. \g
vl

PolyLine request..

..EXxpose event generated as a result of
window becoming hidden then exposed

NS

and continue to repeat event l1oop

J - . s IS

Figure 3: A Sample X Client-Server Session

Server sends back to client data describing the server or refusing the
connection request.

Client makes a request to create a window. This requeéﬁ has no repiy.
It is queued up by the client’s Xlib for subsequent transmission.

client makes a request to allocate a color. Since this request requires a
reply from the server, the Xiib sends all of the pending requests along
with it.

Server sends back a reply describing the allocated color.

Client makes a request to create a graphics context, for using in later
drawing requests.

Client makes a request to map (display on the screen) the created win-
dow.

Client makes a request identifying the types of events it requires. In this
case, Expose and ButtonPress events. [t then waits for an Expose

13

event before continuing. This sends the accumulated requests to the serv-
er.

9. Server sends to client an Expose event indicating that the window has
been displayed.

10. Client makes a request to draw a graphic, using graphic context.

11. Loop back to wait for an Expose event.

The first byte of data in the connection phase identifies the byte order employed
on the client’s machine. The value 102 (ASCII uppercase B) means values are
transmitted most significant byte first, and the value 154 {ASCII lowercase 1)
means values are transmitted least significant byte first. All 16- and 32-bit quan-
tities, except those involving image data, are transferred in both directions using
this byte order specified by the client. X servers are required to swap the bytes of
data from machines with different native byte, in all cases except in image process-
ing. The first byte in the packet that opens the connection between the client and
the server, sent from the client library, tells the server which byte order is native
on the host running the client.

Image data is always sent to the server and received from the server using the
server’s byte order because image data is likely to be voluminous and byte swap-
ping is expensive. The client is told the server’s byte order in the information
returned after connecting to the server.

14

3. X Protocol Communication

The X protocol is designed to communicate all the information necessary to operate
a window system over an asynchronous bi-directional stream of &-bit bytes. From
the user’s point of view and from the application programmer’s point of view the
network is transparent since both local and network connections can be operated in
the same way using the protocol.

Below the X protocol, any lower layer of network can be used, as long as it is
bidirectional and delivers bytes in sequence and unduplicated between a server and
a client process. When the client and server are on the same machine, the connec-
tion is based on local interprocess communication (IPC) channels such as pipes,
shared memory, etc.

Normally, clients implement the X protocol using a programming library that inter-
faces to a single underlying network protocol, typically TCP/IP or DECnet.

The sample implementation provided by MIT [MIT] of the C language client pro-
gramming library called XI[ib uses sockets on systems based on Berkeley UNIX,

Servers are usually designed to understand more than one underlying network
protocol so that they can communicate with clients on more than one type of net-
work at once. For example, the DECwindows server accepts connections from
clients using TCP/IP or from clients using DECnet. Currently, TCP/IP and DEC-
net are the two most popular network protocols commonly supported in the X ser-
vers.

Figure 4 illustrates the relationship between the X protocol and the Internet suite
of protocol. As it is shown in Figure 4, graphics are performed as X applications
on the remote host make the appropriate function calls to their Xlb. The. Xlib
then translates the function calls to X protocol messages that are understood by X
server on the local host. The X messages are then delivered to TCP/IP com-
munication entities within the system kernel through the socket system call inter-
face. From this point on it is the responsibility of the TCP/IP communication
layers (TCP, IP, and hardware interface) on both sides to reliably deliver X mes-
sages from remote host to X server running on the local host.

Figure 5 illustrates X message encapsulation steps as messages (requests, replies,
events, and errors) traverse through TCP/IP network layers down to the Ethernet
hardware interface.

As it is shown in Figure 5 it is common for a TCP segment to contain several X
messages. This is because X server and Xkb buffer X messages instead of sending
them immediately to one another, so that they can continue running instead of
waiting to gain access to the network. This is possible for several reasons:

e Most requests are drawing requests that do not require immediate ac-
tion.

15

Local host Kernel Remote host
r---- - - == } ’ r—- - - --=-=-=-= |
i | | |
| Device driver ! I X Application |
H { Application Layer | |
I X server 1 | ¥1ib |
)		
	!	
1	1 Kernel	
		f
! Socket t l : ,

ockel system Socket system
call interface	Socket Layer	oall Int:rface
}		
A I	1	
Y [!	!	
		1
TCP) Transpert Layer I TCP i		
!	I	
A		
I		
	{ Y	
1P	i 1p	
	Netwerk Layer 1 I	
¢ ! I		
Hatrdv‘\: are I I Hardware		
interface		
Data-Link Layer interface		
(Ethernet)	4	(Ethernet}]
1		
)	[A :	
!		
[I | | _——— =
. | Y _
Ethernet ¢able
Figure 4: X under TCP/IP Suite of Protocol

« The network stream is reliable; therefore, no confirmation message from
the server is necessary.

This X message buffering technique is illustrated in Figure 6.

16

i i 2 28 bytes

-oocode unused} sequence] XEvent
X Message numper Xereor

1 1 2 0-262,143

opcode | unuseq| request | XRequest
X Message jeaues

1 t 2 4 24-234

opcode | unused| seq, repty XRenly
X Message mumbper] length
20 -) - 65535 ————
TCP Message TCP Headert Xdata | |Xdata2 Xgata n

Y

20 - 0 - 65513

iP Message iP Header TCP Meader] Xdata | | Xdata 2 Xdata n

— s s
14— 46-1500 4
Ether Ethernet | ip Header|l TCP eader] xdata || Xdata 2 xaatan | Etnernet
net Header Tratler

Frame

Figure 5: X Protocol Encapsulation under TCP/IP and Ethernet Protocol

3.1. X Protocol Network Calls under 4.3BSD

The following is an overview of network related calls for X protocol under UNIX
4.3BSD operating system. The code segments were obtained from X11R4 source
available form MIT project Athena {MIT]. Stevens [STEVENS| provides an in-depth
explanations of UNIX network calls.

The information presented here is used later to develop a distributed client-server
application which emulated the X client and server to help measure delays in-
volved.

17

X Server Network ¥ Client | X Client 2

Application Application

Kb x1ib
queue, queus,

Device Driver

Server
queue

L

Event]

Reply
Rea. Error
queus queud

—{ 1]
(111

Events into
event queue

Requests from
request queue

Figure 6: X Server and Clients Queues

Figure 7 is a graphic representation of the X server and client network interaction.
The functions in bold format such as socket() are system calls specific to 4.3BSD
while other functions in regular text (i.e., CreatewellknownSockets) are
programmer’s defined functions in the X server code and Xlib.

X Server Networking Interaction

Upon startup, the server initiates network connectivity by issuing the function calls
CreatewellknownSockets and Open _TCP _Connection and subsequently the following
system calls as depicted in Box-1 of Figure 7

1. socket{) system call: A process starts network I/O by specifying the
type of communication protocol with the help of socket system call.
The socket system call is analogous to the open system call for files and
returns a socket descriptor.

2. bind() system call: The bind system call assigns a name to an unnamed
socket descriptor. Basically, X server register its address with the sys-
tem. It tells the system ‘this is my address and any X messages
received for this address are to be given to me.”

18

X Server
BOX |

CreatewelikKnownSockets {

open_tcp_connection()

socket()
tind(}
listent)
X Client
ik BOX 3
Dispatch(y ——
nnnectDispla
waitForSomething() Lo Y
MakeTCPConnection(}
select()
EstablishNewConnection(} socket()
acceptl) connect()
l BOX 4
Estatlish connection
select()
walt for incoming
messages
BOX S
_XFlush{}
writeToServer(}
X write()
ReadReguestFromClient() //-
read(}

Send Requests

BOX 7 BOX 8
writeToClient() _xreadl)
FlusnCitentts ReadFromServer()
writev() N

send Renlies, Events, and Errors

Figure 7: X Server and Client Calls under 4.3BSD

3. listen() system call: This system call is used by X server to indicate its
willingness to accept connections from X clients.

For TCP connection, displays on a given host are numbered starting from 0, and
the server for display N listens and accepts connections on port 6000+N.

Once network initialization process is completed the X server then proceeds to
issues network related system calls in Box-2 of Figure 7.

1. select() system call: This system calls allows the X server to instruct
the kernel to wait for any one of multiple events to occur and to wake
up the X server only when one of these events occurs, such as an in-
coming X client request for connection.

19

2. accept() system call: This system call takes the first connection request
on the queue and creates another socket with the same properties as the
X server socket. '

To reduce the number of small packets and thereby decreasing in the traffic load
on a WAN there is a scheme in 4.3BSD to allow only a single small packet to be
outstanding on a given TCP connection at any time. In this scheme the process’s
TCP buffers the small packets until the previous small packet is acknowledged.
This is known as TCP coalescence. This scheme could significantly increase network
delays for X client-server applications. The TCP NODELAY option is used here
by the setsockopt system call to defeat this buffering algorithm which allows the
X server’s TCP to send small packets as soon as possible.

The fentl() system call with the FNDELAY parameter designates the new socket as
nonblocking. This means that any [/O request that can not be done on a non-
blocking manner is rejected. This feature does not allow the X server to be hung
indefinitely by a bad or slow client.

X messages are then delivered to the server by the TCP entity. Upon their arrival
the server proceeds by reading X messages through read() system call and process-
ing clients’ requests (Box-6).

The X server then returns the appropriate responses back to the X client by
delivering its replies to the TCP entity through writev system call.

X Client Networking Interaction

The X client attempts to connect to server, given the display name. The display
names may be of the following format:

[hostname/ : displaynumber [.screennumber/

where the hostname is the Intermet address of the X server, and the displaynumber
and screennumber are the desired display and screen controlled by the X server,
most often specified as zeros.

131.225.85.1:0.0 is a typical example of a display name.

The absence of hostname is interpreted by the Xlib to make the most efficient lo-
cal connection to the X server on the same machine. This is usually:

e shared memory
e local stream
» UNIX domain socket

s TCP to local host

Within Xlib library, the MakeT'CPConnection{) routine sets up the socket data,
create a socket and attempts to make a connection to the specified X server
(Box-3, Figure 7).

20

As was the case with the server side, the setsockopt() system cail is used to turn
off the TCP coalescence, and select() system call is used for [/O multiplexing

(Box-4, Figure 7).

Functions such as WriteToServer, ReadFromServer, ReadRequestFromClient, and
WriteToClient are used by the X server and Xlb which then use the read()) and
writev() system calls to exchange messages with its peer entity (X server) (Box 5,
6, 7, and 8, Figure 7).

21

3.2. X Client-Server Emulation: emulX

To obtain the network performance characteristics between two processes utilizing
TCP/IP network connection (such as X-server and X-clients), a client-server dis-
tributed application (emulX) was created which closely emulates the underlying net-
working interactions between the an X server and an X client as described in the
previous sectiom.

It should be noted that emulX application objective is to mimic the networking
steps that are taken by the X server and client processes under 4.3BSD as were
shown previously in Figure 7. The emulX client and server simply exchange mes-
sages of specific sizes with each other. The transfer mechanism is provided by the
reliable byte stream services of the TCP protocol as is the case with the X
protocol implementation under 4.3BSD.

The goal of such network interface emulation is to provide lower bounds! on delays
associated with X protocol messages as they go through only the TCP/IP network
layers in a typical X client-server session.

emulX is programmed to act as a server or client. The program acting as as
client would accept for arguments the address of the remote host for connection,
the size of X request , the corresponding reply size, and finally the number and
frequency of transmissions. It then tries to establish a connection over the desig-
nated TCP port to the remote host where its peer entity resides. Once connected,
and the size of the request and reply messages communicated the client starts up
its timer and sends its request to the server. The client then listens on the port
and awaits the arrival of the reply message from the server. Upon the receipt of
the last byte of message from the server it then stops the timer, and outputs the
TCP delay involved in milliseconds.

The emulX program emulating an X server is started on a remote host and ac-
cepts connection from emulX clients on the network. A reply message associated
with the incoming requests is immediately transmitted back to its client.

It should be noted that the TCP delay reported is not just the delay between the
physical interfaces of the local and remote hosts but also includes the delays as-
sociated with Network layers (IP), Transport layers (TCP) and the socket layers.

Figure 8 provides the schematics for this program functionality.

emulX program is used later on to estimate the lower bounds on delays ex-
perienced by X clients and X server applications.

Appendix A provides the complete source code for the emulX application.

4The delays include only the network delays and not X message processing delays

22

emulX/client on local - emulX/server on remote
host : host
Send request; Receive reply;
start timer I stop timer Send reply Receive request
Socket Socket
TCP * + TCP
IP * + Ip
Network
Interface T Ilq:tt:'?:;e

B E—— el i1l —
ol
— -

s

Figure 8: emulX Application Network I[nteraction

23

4. X Protocol Network Load Measurements

4.1. Objective

The objective of this section is to identify the network load associated with the X
Window Systern application. Because of great diversities between various X applica-
tions, an attempt was made to identify some basic X application’s primitives which
are frequently found within X applications.

4.2. Procedure

The software tools used in identifying the network load imposed by the X applica-
tions over a network stream were an X application based on ziifperf [X11PERF], a
network monitoring tool, tepdump [TCPDUMP|, and an X protocol monitoring tool,
zscope [XSCOPE].

The hardware tools for this experiment were two Sun SPARCstation 1+ worksta-~
tions, one for running the X application and another for monitoring the network,
and one Silicon Graphics workstation for running the X server. Figure 9 provides
the schematics for this experiment.

x1llperf

x1lperf is an X1l server performance test program. The xl1lperf application con-
sists of 222 separate tests that stress nearly every aspect of X-server functionality.
The xllperf command that was executed for the purpose of generating graphical
primitives such as drawing dots was:

A4 xllpertf -reps 1 -repeat 1 -sync ~dot

where,

reps 1 fix the repetition count to one. By default xllperf automatically
calibrates the number of repetitions of each test, so that each
should take approximately the same length of time to run across
different servers. We need to by pass the calibration and enforce
the program to only execute the desired request only once.

repeat 1 run the test once.

syne runs the test in synchronous mode. This mode was chosen to

prevent the XLIB from queuing the requests. As explained earlier,
there is a buffering mechanism in the Xlb in which the X re-
quests are not immediately sent to the X server in order to min-
imize network loads. This option, however, instructs the Xlib to
by pass the buffering scheme and send the request immediately.
We need this mode of operation in order to correctly capture net-
work loads generated by individual X requests.

24

Local Host :

Silicon Graphics - Remote Host Sun
X server: X client:
displaying X1 1perf
X1 1perf output

i~
Ethernet Packets
Xscope Network Monitor
(tcpdump)
Silicon Graphlcs Sun
Figure 9: X Network Load Test Bed
dot Generate the request for drawing dots on the screen.

The zilperf program was used to setup the connection to an X server, create a
window, and perform the desired graphical requests in an synchronous mode. This
mode was used to make sure that the Xlib does not provide any queuing of the
requests. A separate run for each of the graphical primitives under investigation
was conducted.

The current program is mostly the responsibility of Joel McCormick. It is based
upon the xllperf developed by Phil Karlton, Susan Angebranndt, and Chris Kent,
who wanted to assess performance differences between various servers.

tecpdump

tcpdump is a network protocol monitoring tool that records traffic on the Ether-
net, the basis of protocol type and source/destination address specification. The
tcpdump command that was typically executed was:

% tecpdump tep port 6989 and host cdsun mnd cdsgi

25

where,

tep port Port 6000 is typically used in TCP/IP for X data. tcp port 6000
specifies to tepdump to record all TCP data that was exchanged
on port 6000,

hoat Record all Ethernet traffic between nodes cdsun and cdsgi. cdsun
This was the name of the host where X client zliper/ was run-
ning.

cdsgi This was the name of the host where X server was running and

processing the zliperf requests.

The tcpdump was run concurrently with the zIiperf on a different platform
monitoring the network medium and reporting all the X protocol related ethernet
packets communicated between the two hosts running the X server and the X
client.

The program is loosely based on SMI's "etherfind” although none of the etherfind
code remains. It was originally written by Van Jacobson, Lawrence DBerkeley
Laboratory, as part of an ongoing research project to investigate and improve TCP
and Internet gateway performance.

X8cope

zscope 18 a program to monitor the connections between the X11 window server
and a client program. zscope runs as a separate process. By adjusting the host
and/or display number that a X11 client attaches to, the client is attached to
rscope instead of X11. =zscope attaches to X11 as if it were the client. All bytes
from the client are sent to zscope which passes them on to X11; All bytes from
X11 are sent to zscope which sends them on to the client. zscope is transparent
to the client and X11.

In addition to passing characters back and forth, zscope will print information
about this traffic on stdout, giving performance and debugging information for an
X11 client and server.

The xscope command that was typically executed was:

% xscope -hedsgi3 -il

where,

-hedsgy Specifies the name of the host where the desired X server is run-
ning.

-1 Tell the zscope to listen to port 6001 (6000+1} for the incoming

X messages from the host running the zfIperf application. [t
should be noted that the display for the zliperf was deliberately
chosen to be the hostname where the zscope is running with port
6001.

zscope was used in this experiment to capture and identify all X protocol messages
communicated between the X server and X client, ziIperf.

26

4.3. Examples of Common X Client Requests

The following is the listing of some of the common X Client Requests which were
generated by the ziifperf application and a summary of their network acsivities
captured by the network monitoring tool.

The network traffic summary for each request includes:

s Total Ethernet packets sent by the X client to the X server for the
given request.

e Total Ethernet packets sent by the X server as a reply to the X client.

o Total X request data |bytes| encapsulated in the Ethernet frames from
X client,.

o Total X reply data |bytes} encapsulated in the Ethernet frames from X
server.

e Sum of X data [bytes| exchanged between the X server and client.
¢ Total number of bytes exchanged between the local and remote hosts.

« Total network overhead |bytes] (TCP, and IP headers plus Ethernet
header and trailer overhead) involved for each X request.

Appendix B provides the synopsis and the raw data collected for these requests.

Opening the Display

Objective: Connects the client to the server controlling the hardware display
through TCP, or UNIX or, DECnet streams.

X Client Call: XOpenDisplay
Network Traffic:

Total Ethernet packets sent by X cliient: 6
Total Ethernet packets sent by X server: 3
Total X client data generated [bytes]: 58

Total X server data generated [hytes]: 218
Total X traffic [bytes]: 272

Total network traffic [bytes]: 78@

Total network overhead [bytes]: 488

27

Creating Windows

Ohjective: Creates an unmapped [nputOutput subwindow of the specified
parent window.

X Client Call: XCreateSimple Window
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes]: 44
Tetal X server data generated [bytes]: 32
Total X traffic [bytes]: 78

Total network traffic [bytesj: 192

Total network overhead [bytes]: 118

Changing Window Attributes

Objective: Changes any or all of the window attributes that can be changed.

X Client Call: XChange WindowAttributes
Neiwork Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes]: 28

Total X server data generated [bytes]: 32

Total X traffic [bytes]: 8@

Total network traffic [bytesi: 240

Total network overhead [bytes]: 188

Mapping a Window

Objective: Maps a window, making it eligible for display.
X Client Call: XMapWindow
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 2
Total X client data generated {bytes]: 12

Total X server data generated [bytes]: 32

Total X traffic [bytes]: 44

Total network traffic [bytes]: 288

Total network overhead [bytes]: 244

28

Copying Window to Window

Objective: To examine the network load involved in copying a 100x100
square pixels from window to window.

X Client Call: XCopyArea, combines (copies) the specified rectangle of sre with
the specified rectangle of dest. Both src and dest must have the
same root and depth.

Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytea]: 32
Total X server data generated [bytes]: 32
Total X traffic [bytes]: 84

Total network traffic [bytes]: 244

Total network overhead [bytes]: 188

Moving Window

Objective: To examine the network load involved in moving a child
window.

X Client Call: XMove Window, changes the position of the origin of the specified
window relative to its parent.

Network Traffic:

Total Ethernet packets gent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes]: 24
Total X server data generated [bytes]: 32
Total X traffic {bytes]: 68

Total network traffic [bytes]: 238

Total network overhead [bytes]: 1898

Resizing Window

Objective: To examine the network load involved in changing a window's
gize.

X Client Call: XResize Window , changes the inside dimension of the window.
The border is resized to match but its border width is not
changed.

Network Traffic:

29

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes]: 24
Total X server data generated [bytes]: 32
Total X traffic [bytes]: B8

Total network traffic [bytes]: 238

Total network overhead [bytes]: 188

Moving a Pointer

Objective: Move the pointer suddenly from one point on the screen to
another.

X Client Call: XWarpPointer
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 2
Total X client data generated [bytes]: 28

Total X server data generated [bytes]: 32

Total X traffic [bytes]: 6@

Total network traffic [bytes]: 384

Total network overhead [bytes]: 244

Creating Graphic Resources

Objective: Creates a new graphics resource in the server.
X Client Call: XCreateGC
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes]: 28
Total X server data generated [bytes]: 32
Total X traffic {bytes]: 68

Total network traffic [bytes]: 248

Total network overhead [bytes]: 188

Destroy Sub-windows

Objective: Destroys all descendants of the specified window (recursively).

X Client Call: XDestroySubwindows
Network Traffic:

30

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes]: 12
Total X server data generated [bytes]: 32
Total X traffic {bytes]: 44

Total network traffic [bytes]: 224

Total network overhead [bytes]: 184

Clearing Windows

Objective: Clears a window, but does not cause exposure events.
X Client Call: XClear Window
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 2
Total X client data generated [bytes]: 20
Total X server data generated [bytes]: 32
Total X traffic [bytesj: 52

Total network traffic [bytes]: 298

Total network overhead [bytes]: 244

Getting Window Attributes

Objective: Returns the XWindowAttributes structure containing the current
window attributes.

X Client Call: XGet WindowAttributes
Network Traffic:

Total Ethernet packets sent by X client: 4
Total Ethernet packety sent by X server: 3
Total X client data generated [bytes]: 24
Total X server data generated [bytes]: 108
Total X traffic [bytee]: 128

Total network traffic [bytes]: b42

Total network overhead [bytes]: 414

Freeing Graphic Context

Objective: Frees all memory associated with a graphics context, and removes
the GC from the server and display hardware.

X Client Call: XFreeGC
Network Traffic:

31

Total Bthernet packets sent by X client: 2
Total Ethernet packets sent by X server: 1
Total X client data generated [bytes}: 12
Total X server data generated [bytes]: 32
Total X traffic [bytes]: 44

Total network traffic [bytes]: 224

Total network overhead [bytes]: 188

Destroying Window

Objective: The window and all inferiors {recursively) are destroyed, and a
DestroyNotify event is generated for each window.

X Client Call: XDestroy Window:
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 2
Total X client data generated [bytes]: 12
Total X server data generated [bytes]: 32
Total X traftic (bytes]: 44

Total network traffic [bytes]: 288

Total network overhead [bytes]: 244

Appendix B provides the synopsis and the raw data collected for each of these X
requests.

4.4. Examples of X Graphical Primitives

The following is the listing of all the graphical requests under study which were
generated by the zIllperf application and a summary of their network activities
captured by the network monitoring tool.

The network traffic summary i3 as explained earlier.
Appendix B provides the synopsis and the raw data collected for these graphical

primitives.

Drawing Points

Objective: To examine the network load involved in drawing 1000
points.

X Client Call: XDrawPoints, draws one or more points into the specified draw-
able.

Network Traffic:

32

Total EBthernet packets sent by X client: &
Total Ethernet packets sent by X server: 2
Total X client data generated [bytea]: 4816
Total X server data generated [bytesj: 32
Total X traffic [bytes]j: 4948

Total network traffic [bytes]: 4488

Total network overhead [bytes]: 420

Drawing Lines

Objective: To examine the network load involved in drawing 1000 10-
pixel thin lines.

X Client Call: XDrawlines, draws a series of lines joined end-to-end.

Network Traffic:

Total Ethernet packets sent by X client: &
Total Ethernet packets sent by X server: 2
Total X client data generated [bytes]: 4028
Total X server data generated [bytes]: 32
Total X traffic [bytes]: 4852

Total network traffic [bytes]: 4472

Total network overhead [bytes]: 420

Drawing Text

Objective: To examine the network load involved in writing an 80
character string in (6x13) font.

X Client Call: XLoadQueryFont, loads a font and fill information structure.

Network Traffic:

Total Ethernet packets sent by X client: 4
Total Ethernet packets sent by X server: 3
Total X client data generated [bytes]: 28
Total X server data generated [bytes]: 1798
Total X traffic [bytes]: 1824

Total network traffic [bytes]: 2244

Total network overhead [bytes]: 428

X Client Call: XChangeGC{)
Network Traffic:

33

Total Ethernet packets sent by X client: 2
Total Ethernet packets sent by X server: 2
Total X client data generated [bytes]: 28
Total X server data generated [bytes]: 32
Total X traffic [bytes]: 62

Total network traffic [bytes]: 232

Total network overhead [bytes]: 188

X Client Call: XDrawString()
Network Traffic:

Total Ethernet packets sent by X client: 2
Total Ethernet packete sent by X server: 1
Total X client date generated [bytes]: 194
Total X server data generated [bytesi: 32
Total X traffic [bytes]: 136

Total network traffic [bytes]: 318

Total network overhead [bytes]: 188

X client Call: XFreeFont()

Network Traffic:

Total Ethernet packets sent by X client: 2
Total Bthernet packets sent by X server: 2
Total X client data generated [bytesi: 12
Total X server data generated [bytes]: 32
Total X traffic [bytes]: 44

Total network traffic [bytes]: 288

Total network overhead [bytes]: 244

Drawing Image

Objective: To examine the network load involved in drawing a 100x100
pixela image on a window.

X Client Call: XPutfmage , Draws a section of an rectangle in a window or pix-
map.

Network Traffic:

Total Ethernet packets gent by X client: 18
Total Ethernet packets sent by X server: 3
Total X client data generated [bytes]: 1&028
Total X server date generated [bytes]: 32
Total X traffic [bytes]: 10860

Total network traffic [bytes]: 186799

Total network overhead [bytes]: 849

34

Getting Image

Objective: To examine the network load involved in getting a 100x100
pixels image.

X Client Call: XGetimage, dumps the contents of the specified rectangle, a draw-
able, into a client-side X[Imeage structure, in the format specified.

Network Traffic:

Total Ethernet packets sent by X client: 8
Total Ethernet packeta sent by X server: 8
Total X client data generated [bytes]: 24
Total X server data generated f[bytes]: 18064
Total X traffic [bytes]: 12888

Total network traffic [bytes]: 12928

Total network overhead [bytes]: 838

35

5. X Protocol Network Delay Measurements

5.1. Objective

The objective of this section is to estimate the X Protocol network delay ex-
perienced between the X server and client processes communicating through TCP
streams. The measured delays are then tabulated for the graphical primitives under
study.

5.2. Procedure

Two remote hosts and a local hosts were chosen to represent typical communica-
tion paths over a LAN and a WAN configuration.

In the LAN configuration discussed in the next section the remote and local hosts
were located in two separate subnetworks of Ethernet LAN. The connectivity be-
tween the subnets was established by the help of two routers and a backbone
Ethernet between them.

In the WAN configuration discussed in section 5.4 the local host remain the same
as the LAN configuration, however, the remote host was located in a remote
Ethernet subnet. The connectivity between the remote and local subnets was es-
tablished through the ESnet Wide Area Network.

The emulX application was started as a server on the remote hosts and was
queried by the emulX client running on the local host.

The measurements on network delays were done for the request and reply sizes of
the graphical primitives of interest. 60 sample points were logged in for each
graphical primitives at prime working hours of 10 a.m to 11 a.m and 2 p.m. to 3
p-m. on weekdays for a period of two weeks.

The average network delays were then tabulated and summarized for the two net-
work configurations.

The system configuration of the local hest where the client is running had to be
changed to increase its clock resolution from the default setting of 1/100 HZ (10
msec) to 1/1800 HZ (0.5 msec) which was the highest clock resolution available.
The high resolution was necessary especially in the LAN configuration where typical
communication delays are much lower than default system clock resolution of 10
msecs.

36

5.3. LAN Configuration: X Protocol Network Delay Estimates

The client and the server were invoked on two hosts located in two separate sub-
networks connected by two CISCO routers. The entire LAN is comprised of over
50 subnetworks connected by backbone Ethernet.

The traceroute [TRACEROUTE| program was used to identify network devices be-
tween the two hosts. Figure 10 provides the schematics for this LAN configuration.

Local Host

cdsun.Tnal.gov Backbone Ethernet

—

Router |

131.225.85.200

Subnet 1

Router i1

Subnet 2
131.225.199.200

I

Remote Host
fn126¢.fnal.gov

Figure 10: Schematic of the LAN Configuration

Table 1 provides the summary of the network loads and delays associated with the
X client requests under study.

37

Average Network Loads and Delays in a LAN

X Client Requests Network-Load|bytes] Average Delay[mas]
and Standard Deviation

Opening Display 760 7.1, 19
Create a Window 192 6.2, 2.1
Change Window 240 6.0, 1.6
Attributes
Map Window 288 6.2, 1.8
Moave Pointer 304 6.9, 1.8
Create Graphic 240 6.9, 2.6
Context
Destroy Subwindow 224 5.8, 1.8
Clear Window 296 6.3, 2.4
Get Window Attributes 542 6.4, 2.0
Free Graphic Context 224 6.9, 2.3
Destroy Windows 288 57, 1.6
Drawing 1000 points 4468 18.1, 2.8
Drawing 1000 10-pixel thin 4472 19.2, 2.6
lines
Query and Load a Font 2244 14.6, 2.1
Writing an 80 character 316 9.2, 2.5
6x13 font
Free Font 288 6.8, 2.1
Copying a 100x100 square 244 6.3, 1.8
pixels from window to
window
Drawing a 100x100 pixels 10709 69.2, 15.5
image
Getting a 100x100 pixels 10926 71.2, 41.8
image
Moving a window 236 6.1, 2.1
Resizing a window 236 6.2, 1.8

Table 1:

Average Network Load and Delay for

X Client Requests in a LAN

38

5.4. WAN Configuration: X Protocol Network Delay Estimates

The client and the server were invoked on two hosts located in two separate sub-

networks. The subnets were connected through their Ethernet backbone and the
FSnet Wide Area Network.

The traceroute program was used to identify network devices between the two
hosts. Figure 11 provides the schematics for this WAN configuration.

Local Host 1
cdsun.rnal.goyv
Local Backbene Ethernet 1
| |
1
1
L1 '
' Router
Router | Router |1 | Y
131.223,85.200 ciscl.fnal.gov esfnal.fnal.gov
Local Subnet T
1
! one hop
]
[|
1 Router
Router VI Router V I v
Remote Subnet
1343.1.81 1927413817 ssc-Tnal.es.net
| |
- 1
1
1
[|
1
[|
I 1
Remote Host 1
past.ssc.gov ESnet National
Backbone T1 Link

Remote Backbone Ethernet

Figure 11: Schematic of the WAN Configuration

Table 2 provides the summary of the network loads and delays associated with the
X client requests under study.

39

Average Network Loads and Delays in a WAN

X Client Requests

Network-Load{bytes|

Average Delay[msj
and Standard Deviation

Opening Display 760 43.5, 7.3
Create a Window 192 43.8, 6.5
Change Window 240 40.3, 5.7
Attributes

Map Window 288 43.3, 5.9
Move Pointer 304 52.6, 5.7
Create Graphic 240 38.2, 4.6
Context

Destroy Subwindow 224 38.9, 74
Clear Window 296 422, 4.9
Get Window Attributes 542 45.3, 7.2
Free Graphic Context 224 43.3, 7.7
Destroy Windows 288 48.3, 6.4
Drawing 1000 points 4468 84.6, 10.1
Drawing 1000 10-pixel thin 4472 78.9, 10.7
lines

Query and Load a Font 2244 35.6, 8.8
Writing an 80 character 316 30.7, 5.1
6x13 font

Free Font 288 30.9, 4.5
Copying a 100x100 square 244 43.3. 6.0
pixels from window to

window

Drawing a 100x100 pixels 10709 297.3, 42.2
image

Getting a 100x100 pixels 10926 276.3, 51.1
image

Moving a window 236 41.3, 6.2
Resizing a window 236 39.3, 5.6

Table 2:

Average Network Load and Delay for

X Client Requests in a WAN

40

6. Network Traffic Profile: LAN Configuration

8.1. Objective

The objective of this section is to briefly describe the Simple Network Management
Protocol (SNMP) [SNMP| which was instrumental in gathering network statistics
for the LAN configuration. The statistical observations are used later on in the
queuing analysis of the LAN configuration.

6.2. Network Monitoring Tool: SNMP

SNMP (Simple Network Management Protocol) is a lightweight network manage-
ment protocol for TCP/IP networks which was created to help monitor network
performance, configure network devices, and detect network fauits. SNMP evolved
from the SGMP (Simple Gateway Monitoring Protocol) protocol in 1988 and has
been deployed in networks since early 1989 [ROSE].

SNMP allows a network management station to communicate with the managed
network entities. Each of these network entities, such as hosts, routers, printers,
etc., must run agent software implementing the SNMP protocol which will update
network management data about managed objects (e.g., packet counts, types, sizes,
etc.) on that entity and retrieve this data when requested to do so by the net-
work management station. The managed objects are collectively referred to as the
Management Information Base (MIB).

The network management station monitors the network by communicating with the
SNMP agents on the network entities (hosts, routers, etc.), collecting data about
the managed objects from them, and providing applications and reports which allow
the network administrator to monitor faults and analyze the data. Figure 12 il-
lustrates a network configuration in which a network management station monitors
and manages other network entities through SNMP protocol.

The network statistics for the two routers (network entities) with the LAN con-
figuration tested were obtained by querying their SNMP agents for information on
their Interface group. The Interface group is a group of managed objects that con-
tain generic information about the interface (physical) layer of the network entity.
The following is the list of managed objects that were queried from the SNMP
agents:

o ifIndex: interface number
+ iflnOctets and ifOutOctets: number of bytes received/sent (counter).

o ifinUcastPkts and ifOutUcastPkts: number of unicast (not
broadcast/multicast) packets accepted/sent (counter).

Backbone 41
Link

Network Local segment
Management

Workstation
Station

running
SNMP agent

Router or bridg

ruenning SNMP
o [SNMP Protocol] crm—imm- agent 9

Local segment
[SNMP Protocol]

workstatton

running Printer
SNIMP agent running SNMP
agent
|] - :
[~—- (SNMP Protoco)] ———imm Router or bridgq
running SNMP - [1
agent

workstation

running
SNMP agent

Figure 12: Schematic of a Network Configuration Managed by SNMP Protocol

e iflInNUcastPkts and ifOutNUcastPkts: number of non-unicast
accepted/sent (counter).

e iflnDiscards and ifOutDiscards: number of incoming and outgoing
packets discarded due to resource limitations (counter).

e ifInErrors and ifOutErrors: packets discarded due to format error.

o ifInUnknownProtos: number of packets with unknown protocol received
(counter).

Figure 13 illustrates the Network data obtained by querying the routers’ SNMP
agents.

As is shown, packets arrive at the interface (physical) layer from the layer below
(transmission medium). The good packets (packets with no error or known
protocol) are delivered to the above layer (IP) with the counters representing their
type (e.g., iffnUcastPkts) updated. The bad packets (packets with error, unknown
protocol, etc.) are discarded and their corresponding counters updated.

42

Layer Above

ifInUcastPkis+ TfOutUcasthts+
ifinNUcastPkts ifOoutNUcastPkts
ifInDiscards -

- ifouttrrors
iftnUnknownProtos i

S—. itQutDiscards

Layer Below

ifinErrors -

Figure 13: SNMP Network Statistics for the Interface Layer

As packets arrive from the above layer to the interface layer for delivery the out-
going packet statistics are also updated.

The network management station monitors network entities by accessing their
statistics through SNMP protocol.

6.3. Procedure

With the help of a Network Management Station (NMS) the routers involved in
the LAN configuration were queried for a period of about 4 weeks on week days
to determine the average packet rate and size distribution. The querying periods
were chosen to be during the high traffic hours of 10:00 a.m. to 11:00 a.m. and
2:00 p.m. to 3:00 p.m. During those hours SNMP messages were sent to the
SNMP agents of the routers with their responses logged in at five minutes interval.
Five hundred eleven of such reports were collected to obtain the following obser-
vation on the characteristics of the routers involved in our LAN configuration.

43

The responses coming from the SNMP agents such as i¢ffnOctets are counter values
and the actual data is the difference between the report at time t+300 and t. This
difference was then divided by the elapsed time (300 seconds) to obtain an average
rate.

The average packet rate was determined by subtracting all of the incoming packet
counter reports at time t from all of the incoming packet counter reports at time
t+300 for the two network interfaces of the router and then dividing the difference
by the interval time of 300 seconds.

The average bit rate was determined from the difference of incoming bytes counters
at two consecutive time interval multiplied by 8 and dividing it by the elapsed
time.

The average packet size was determined by dividing the total received bytes by the
total number of packets received during the same time interval.

6.4. Network Statistics on Router I

The following is a summary of the traffic profile observed on router-I with the In-
ternet address of 131.225.85.200 at high traffic hours for a period of 4 weeks.

Input Traffic Profile

Packet Rate: The minimum input packet rate is the minimum of all the average
packet rates observed during the high traffic hours. The average input packet rate
during high traffic hours was determined by averaging over all the average packet
rates during querying interval (300 seconds). The maximum input packet rate is
the maximum of all the average packet rates observed during the high traffic
hours.

Bit Hate:The minimum, average, and maximum bit rate are determined similar to
the packet rate calculations.

Average-Packet-Size Distribution: The minimum input packet size is the min-
imum of all the average packet sizes observed during the high traffic hours. The
average input packet size during high traffic hours was determined by averaging
over all the average packet sizes during querying interval (300 seconds). The max-
imum input packet size is the maximum of all the average packet sizes observed
during the high traffic hours.

Table 3 summarizes input traffic profile obtained from router I.

Figure 14 is a graphical representation of average input packet size distribution on
router-I during high traffic hoq;!

44

Input Rate Statistics

Frequency

Min Max Median Average Std. Dev.
Packet Rate 102.3 319.1 161.6 166.6 31.2
(packet/sec)
Bit Rate 86.3 560.4 139.8 148.8 42.7
{Kbit/sec)
Packet Distribution| 90.8 168.6 105.5 109.7 12,9
(bytes/packet)

Table 3: Router-I Input Traffic Profile Statistics
Average Packet-size Distribution
Router-1

100
B0 —
60 -
40 -
20 4 pym
0" iy 3R peme {EFRR PR EOE e AR
ol 2 ® \Q'L'g \05,‘5 \.\03'\\)..\ \\5.0 " 2 \,15.5\19.1 \.55.’3\51 LR 3 \.'5.'1\.9.\ \,’59 \55.5 \6‘3:1 \eu.ﬁ \b&ﬁ’ :

.b/ 1 - b’ ‘:’ Cd - ." - - Cd - - - - - - - - - -
ad” gk’ o® gl \05‘5 \\03'\\"‘ .\'@‘° .\1\9\1‘39.\19:1 \-5'5-% ! » .‘n\'ﬁ\u'::l'.\n‘-"\ \':;59 \‘JB'% \i:p"‘ -\b"b

Average Packst Size (brtes)

Figure 14: Average [nput Packet-size Distribution on Router-I

Qutput Ttraffic Profile

45

Packet Rate: The following packet rate values were determined similar to the the
input packet rate calculations described previously.

Bit Rate: The bit rate values were determined similar to the the input bit rate
caleulations described previously.

Table 4 summarizes output traffic profile obtained from router L

Output Rate Statistics

6.5. Network Statistics on Router II

Min Max Median Average | Std. Dev.
Packet Rate 98.6 315.5 158.3 163.6 36.8
(packet/sec)
Bit Rate B4.0 555.7 136.7 146.4 46.2
(Kbit/sec)
Table 4: Router-[Output Traffic Profile Statistics

The following is a summary of the traffic profile observed on router-II with the In-
ternet address of 131.225.199.200 at high traffic hours for a period of 4 weeks.

Input Traffic Profile

Packet /Bit

Rate:

The

description of the minimum,

average,

packet/bit rates are similar to the router-I values as described earlier.

and maximum

Average-Packet-Size Distribution: The description of the minimum, average,
and maximum packet sizes are similar to the router-I values as described earlier.

Table 5 summarizes input traffic profile obtained from router Il

Input Rate Statistics

Min Max Median Average Std. Dev.

Packet Rate 86.2 295.7 104.9 111.4 25.1
{packet/sec)
Bit Rate 84.7 573.9 102.9 123.1 76.7
(Kbit/sec)
Packet Distribution| 104.2 272.2 123.4 128.2 22.3
(bytes/packet)

Table 5: Router-iI Input Traffic Profile Statistics

46

Figure 15 is a graphical representation of average input packet size distribution on

router-1I during high traffic hours.

Average Packet-size Distribution

120 =

- 100 4

80 +

50

Frequency

40 -

20 45

0 A

i

Figure 15:

OQutput Traffic Profile

Router-II

::: IR

. Average Packst Size (bytes)

0 k]]
\d’.a-\\e'o\'l" '5"’1\"3 W \!pq \69 \‘le' \56 \9" ’L°~" 'L°:' '1\1' 'L"'O '1'19 ’1'51 ‘1"5 ’1"‘3 '1-"5
1 o 6
\00 \09 \\50\1,5 \-5‘51 n> 513 &0 a'-"-’ -1?’ \eﬁ'

1
\Q‘J ,Lo'b _.L\'I- 110 'I-'Lg 14_.,1 1,,6 '].6‘3

Average Input Packet-size Distribution on Router-II

Table 6 summarizes output traffic profile obtained from router IL

Output Rate Statiatics

Min Max Median Average Std. Dev.
Packet Rate 82.2 285.5 99.8 105.7 24.7
(packet/sec)
Bit Rate 81.5 575.8 100.5 121.2 V7.5
(Kbit/sec)
Table 6: Router-II Output Traffic Profile Statistics

The input statistics (e.g., packet rate) on both routers are slightly greater than
their corresponding output statistics {e.g., the average input packet rate on router I

47

is 166.6 packet/sec while the average output packet rate is 163.6 packet/sec with
greater standard deviation). This phenomenon is due to the fact that some of the
input packets are not forwarded due to some errors or more likely the input pack-
ets were addressed to the router itself. In general, as might be expected, the router
increases the variation in rate going from input to output.

48

7. Network Device Maximum Throughput Measurements

7.1. Objective

The objective of this section is to determine the maximum throughput of the
routers in bits/sec in the LAN configuration. This value is necessary in the con-
struction of the queuing model.

7.2. Flooding Experiment Procedure

The technique used in measuring the network device maximum throughput was to
send (flood) streams of Ethernet packets at different packet rates and sizes until
the router is overwhelmed. A ping program with a special flooding feature which
sends [CMP® messages as fast as possible was used by several “packet generator”
machines concurrently on the local area network to achieve the input bit rate re-
quired for router saturation.

The saturation point was considered reached when the router started dropping
packets to protect itself. The observed bit rate at the saturation point is then an
estimate to the network device maximum bit rate throughput. This experiment was
done at times when the network load was very low from sources other than the
test sources so as to provide a control environment for the experiment and also to
avoid inconveniences to network users caused by the routers momentary saturation.

Different number of packet generating machines were chosen to flood the router
concurrently. Durinrg the flooding period another machine not involved in generating
packets was acting as an Network Management Station (NMS) and querying the
router via SNMP messages for statistics on the interface (physical) layer which in-
cludes total number of bytes/packets received or sent by the network router.

By increasing the ICMP packet size sent by each machine to the router the overall
throughput was increasing until the saturation point was reached. Beyond that
point the router performance degraded significantly as majority of the ICMP mes-
sages coming from “packet generators’ were left unreplied.

The SNMP messages were sent to the router’s SNMP agent at fixed intervals. It
was assumed that the responses from the SNMP agent would also be received at
fixed interval. This, however, turned out to be wrong assumption, since during the
flooding period the querying SNMP packets were either lost or the SNMP agent
was slow in responding which resulted in getting responses at variable time inter-
val. Without an accurate time interval one could not obtain an accurate rating
values from the SNMP messages.

°Internet Control Message Protocol. This protocol is used to handle error and control information between
gateways and hosts. The ping program sends ICMP messages to the hosts or gateways and awaits reply
mesgages from them. The [CMP messages are usually generated and processed by the TCP/IP networking
software itsell, and not user processes

49

At this point it was decided to proceed with experiment with a passive approach.
In this approach while the ICMP message generating machines were flooding the
router and the router was reaching its saturation point another machine not in-
volved in packet generation was designated to capture packets that were destined
to or sourced from the router with the help of the tepdump application described
earlier.

The output of the tcpdump application was saved in a packet trace file for dif-
ferent experiments run.

The trace file includes one line of information about every packet that was trans-
mitted by the packet generating machines or the flooded router during the flooding
experiment. The summary line shows the packet’s source and destination IP ad-
dress, timestamp, length, and type.

Figure 16 illustrates flooding experiment set up.

Host running TCPDUMP
Host running traffic monitor

— — l

ICMP echo

reply from Router |
Router | Backbone Ethernet

-

131.225.85.200

requests

Host pinging Router |
\ pinging 1CMP echo
1o Router | Hest pinging Router |

it
| - ==
' Host ainging Router |
‘ Host pinging Router |

L +—"T =t |

il

Host pinging Router |

* Host pinging Router |

L 1 =1 1

——

Figure 18: Flooding Experiment Test Bed

An analysis program was created to parse the trace file for a summary of input
packet rate to the router during the flooding experiment. The input bit rate to the
router was also determined from the length field in each packet summary line.

50

The trace file was also parsed to obtain a summary of output packet rate from
the router. The output bit rate was determined from the length field in each
packet summary line.

The maximum throughput of the router in bit rate is therefore the maximum ob-
served traffic originating from the router. This approach assumes that the observed
bit rate on one interface is the maximum achievable throughput by the router and
that the traffic on the other interface is insignificant. Indeed prior to the experi-
ment the traffic on the other interface was measured and confirm to be minimal.
This was due to the fact the experiment was done at times when there were al-
most no network traffic present in the LAN.

The following observations should be noted for the preceding experiment set up.
First of all, the current set up does not allow to observe the effect of packet rate
and bit rate on the router separately., A better approach would be to create the
packet stream with a single source with ability to control the interpacket gaps and
packet sizes. This way the packet rate and bit rate can be change by changing
the gap size and packet size independently. This approach could yield a better es-
timate for packet and bit rate saturation points.

Secondly, in the current set up the saturation point could also be affected by the
Ethernet channel acquisition delay. That is because the ICMP replies are sent from
the router to the ICMP “packet generators” on the same segment.

Finally, it should be noted that this experiment only measures the router maximum
throughput when packet generating machines are flooding it with ICMP messages
created by the ping application. This means there are some extra processing in-
volved in the ICMP packet processing at the network layer (IP). This extra
processing includes packet assembly for the incoming messages and fragmentation
for reply messages. It is quite possible that the observed saturation point due to
ICMP packet processing is lower than saturation point due to [P packet forwarding
process.

A more ideal experiment would be to measure the router maximum throughput
when input packets are simply routed or forwarded at the IP layer to another sub-
net on the other side of the router. This way the channel acquisition delay effect
is out of the picture since the outgoing packets are forwarded to the segment with
no Ethernet traffic. The [P packet routing which is viewed as any router’s main
activity requires less processing that ICMP reply processing and this could result in
a higher saturation point and consequently greater device throughput.

Such an ideal experimental set up is currently under development.

51

7.3. Flooding Experiment Results

The following table summarizes the observations made during the flooding experi-
ment.

Ioput To Router-T Output From Router-I
Number ICMP Message Pkt-rate Bit Rate Pkt-rate Bit Bate
of Hoste [Bytes] [Pkt/sec] [Mbps] [Pkt/sec] [Mbps]
1 708 aa #.54 o8 B.54
1 1498 81 g.94 88 2.93
1 2008 196 1.62 192 1.40
2 700 183 3.97 182 a.87
2 1408 147 1.7@ 147 1.78
2 20908 398 3.39 129 1.908
4 708 257 1.53 184 1.12
4 1488 419 4.74 241 2.808
4 2000 586 4.91 88 J.43
7 700 464 2.79 16886 a.99
7 1400 6d8 7.01 238 2.73

Figure 17 provides a graphical observation made from the flooding experiment
result in the above table.

This graph represents the router’s observed output bit rate during the experiment
as a function of observed packet rate traffic into the router. Three plots for dif-
ferent message sizes (700, 1400, and 2000 bytes) are presented in order to also es-
tablish bit rate saturation effect.

As was suspected the service rate capacity of the router is a function of byte
processing (packet size) as well as packet processing (the number of incoming pack-
ets).

The router showed its best performance (output bit rate) when 4 machines were
floeding it with the ICMP packet size of 1400 bytes.

The maximum throughput for the router in processing 1400 ICMP packets is 2.8
Mbps.

Observed Bitrate from Router-l (Mbps)}

52

Router-I Throughput Characteristics

in Flooding Experiment

3.0
ICMP Message Size . a
254 -—~e— 700 Bytes
—~a— 1400 Bytes
= 2000 Bytes
2.0 4
A
-+
1.5
(Rt ./ ——t
0 s / e
0.5 e
+
0.0 T T T T ! T
0 100 200 300 400 500 600
Bthernet Input Packet Rate to Router-i (pkt/sec)
Figure 17:

Router-I Throughput Characteristics in Flooding Experiment

533

8. Amnalytical Modeling of LAN Configuration

8.1. Objective

The objective of this section is to create an analytical queueing model of the net-
work between the X server and client processes and obtain a closed form solution
for the network delays experienced. The aim is to create the model for a small
network, validate its predictions and then expand the model for larger networks.

8.2. Queuing Model Introduction

Queuing theory is one of the most important tool for quantitative analysis of com-
puter networks. A simple queueing model consists of a a waiting line (buffer)
where customers (packets) are awaited for services, a server with some service rate
capacity mu, and some customer (packet) arriving rate. A more complete treatment
of the queuning theory and its applications to networking can be found in Schwartz
(SCHWARTZ]. Such queuing models can be used to quantify the time delay, block-
ing performance, and packet throughput of a networking system. These performance
parameters are known to depend on the probability of the state of the queue or in
other words the number of the packets on the queue (including the one in service).
To calculate the probability of number of the packets in the queue one must have
the knowledge of:

1. The packet arrival rate.

2. The packet length distribution, assuming that service time is directly
proportional to the packet length.

3. The service discipline.

M/M/1 Quene

The M/M/1 queue is the simplest model of a queue. This model implies that:

o The interarrival time has a Poisson distribution.
¢ The service distribution (Packet length) is exponential.

e There is only one server ‘and the service discipline is First Come First
Served (FCFS).

¢ The gqueue has infinite buffer.

In analysis of the M/M/1 queue one can derived the mean number of packets in
the system (N) to be [TANENBAUM]|:

54

(1)
e

‘N_(I»p)

Where: p (Traffic Intensity) is defined as: Packet-Rate/Service-Rate.

D.C. Little [LITTLE] provided the well known Little’s results which states that a
queuing system with average packet arrival rate (i) and mean time delay (T)
through the system, has an average queue length () given by:

(2)

N
=
where:
T: average delay.
N: average number of packets in the queue.
s average packet-rate.

Combining equations (1) and (2) one could get the total waiting time, including
the service time to be:

1

(average service rate—average _packet _arrival_rate)

Mean _delay=

Networks of M/M/1 Queues

The results derived from the previous section can be directly applied to our LAN
confguration if each router can be modeled as an M/M/1 queue.

Kleinrock [KLEINROCK] was one of the first to apply the application of quening
theory to a communication channel. In this application the mean queuing and
transmission delay for every node on the network is derived to be:

(3)

T 1
“(eC-2)
where:
1/ mean packet size [bits/packet]
C: capacity of communication channel [bits/sec]

A packet arrival rate |[packet/sec|

55

T mean delay per packet|sec]

The service rate capacity (C) in equation-(3) was taken to be equal to the com-
munication channel capacity rate according to Tanenbaum [TANENBAUM]. This
assumes that the packet processing time is negligible compare to the transmission
delay and as a results the service time per packet is mainly due to the packet
transmission time.

This assumption does not apply to our LAN environment where transmission rate
is no longer the communication bottleneck. A study of the network which encom-
passes our LAN configuration has shown that on the entire network the average
utilization is about 5.94% of Ethernet channel with the peak of 8.49% [PABRAI|.

By changing the definition of the C parameter in the equation (3) from com-
munication channel capacity to network device maximum throughput one could
derive the queuing delay (packet processing as well as packet transmission) for
every node on the network,

Additional delay is involved in our Ethernet LAN environment and that is the
delay associated with the channel acquisition. There have been many studies on the
subject of analytical modeling of CSMA/CD protocols.

Metcalfe and Boggs derived a simple formula for prediction of the capacity of
finite-population Ethernets [METCALFE]. Lam used a single-server queueing model
in which the server is the shared channel to obtain expressions for delays and
throughput [LAM)]. Tobagi and Hunt applied the method of embedded Markov
chains [TOBAGI| to more accurately model CSMA/CD. Franta also obtain solu-
tion for delay by modeling the communication channel as a single server queueing
model. The service time for a packet is given by the time required to send the
message over the channel; a time determined by the length of the message and the
speed of the channel [FRANTA]. ‘

In our LAN configuration the output of several lines are converged to the routers
in the LAN. Thus the input to one router is no longer a Poisson process outside
the network, but the sum of the outputs of several other networks as describe in
[TANENBAUM] section A.3. However, Jackson [JACKSON] has shown that an
open network of M/M/1 queues can be analyzed on individual basis and the total
delay would be equal to the sum of all delays experienced in each queue.

In general Poisson streams have the following properties:

» Merging of % Poisson streams with mean rate results in a Poisson
stream with a mean rate equal to the sum of the input rates.

o The arrival of a Poisson stream to a service center with exponential ser-
vice time results in the departure Poisson stream with the same mean
rate.

8.3. LAN Configuration: A Network of M/M/1 Queues

Our LAN configuration consists of two hosts running X client and server processes
in separate Ethernet subnets. The subnets are connected to each other with two
routers and a backbone Ethernet. The message delays between the two processes is
the sum of queuing delays in the routers (two router, two queuing delays), the
CSMA/CD packet transmission delays (there are three of these), and packet
processing delays in the network and interface {physical) layers of each hosts.

It should be noted that simple summation of individual delays to get the overall
delay in the system is based on the assumption that all queues within our system
can be characterize as M/M/1 queue.

Figure 18 is a graphical representation of our LAN configuration analytical model.

Local Hest
cdsun.frhal.gov
X Server
Box |
Communication Layers
Delay
Box 3
Router | Eﬁ:&fﬁ
Box 2 Queuing Delay Aquisition
Delay on
CSMA/CD Channe fe . gy 4 Backoane
o Aquisition Delay Ethernet
on subnet | 13122555200
Router 1l
Box 4 Queuing Delay
CSMA/CD Channel
Aquisition Delay e]
on subnet 2
131.225.199.200
Box 5
Communication Layerg
Delay
X Clent

Remote Host
fn126o.fnal.gov

Figure 18: Analytical Modeling of LAN Configuration

57

8.4. Routers Queueing Delay

As is shown in the Figure 18, the routers in our LAN configuration are modeled
as a network of M/M/1 queues. The followings are the arguments for such assump-

tlons:

Poisson Arrival Rate Assumption

The assumption of an exponential interarrival probability {Poisson arrival) is
reasonable for any system that has a large number of independent customers
{TANENBAUM]. The Ethernet subnet in our LAN configuration contains over 100
computers communicating with each other and other subnets through router-I.

Exponential Service Time Assumption

It is assurmned that the service time is directly proportional to the packet size and
if the packet size distribution is exponential one can confidently argue that the ser-
vice time on each packet is also exponential.

Figures 14 and 15 provide a graphical representation of average-packet-size distribu-
tion in our LAN routers for a period of four weeks. As is shown the average
packet-size distributions have close resemblance to an exponential distribution.
Several studies [SURI] have shown that a slight departure from the exponential as-
sumption does not make a significant difference in the result.

Queuing Delay on Router-I

Average Packet Size: 189.7 bytes
Service Rate Capacity: 2.8 Mbps
Average Arrival Bate: 186.8 pkt/sec

From equation (3) one can calculate the average delay .each packet would ex-
perience in this router to be (.33 msec.

Queuing Delay on Route-II

Average Packet Size: 128.2 bytes
Service Rate Capacity: 2.8 Mbps
Average Arrival Rate: 111.4 pkt/sec

From equation (3) one can calculate the average delay each packet would ex-
perience in this router to be 0.38 msec.

Total LAN Configuration Queuing Delay

The overall average delay experienced by each packet in our LAN configuration
routers is simply the sum of the two delays, 0.71 msec. Again this simple ad-
dition is possible since the routers were shown to be correctly modeled as M/M/1
queles.

58

8.5. Communication Layers Delay

The X messages communicated between the X client and server experience certain
delay as they become subject to processes within the communication layers. These
delays are represented as Box-1 and Box-5 in Figure 18.

To measure the time spent on these layers, the ciient and server applications in
emulX were started on the same host and the elapsed time between requests sent
and replies received were logged in.

In such arrangement a message sent from the X client to an X server on the same
machine will go down the socket and network layer in the client side and up the
socket and network layer to reach the server port.

The average time for a packet going through the local and remote communication
layers is thus the time spent between the client and server communicating over the
same machine assuming that the local and remote hosts are of the same kind. This
delay, however, does not include the time spent in the interface layer. The average
delay for a packet of size 100 bytes to go through the socket interface layer, the
transport layer (TCP), the network layer (IP) was measured to be 0.55 msec. The
packet of size 100 bytes will experience the same average delay as it travels up-
ward from the network layer through transport layer to the socket layer.

A packet size of 100 bytes is close to the average packet size observed in our
LAN configuration.

Figure 19 illustrates the test set up used in measuring the communication layers
delay in each host.

Is it a correct assumption to characterize the communication layers within the local
host as a pair of M/M/l queues, one for incoming packets and another for the
outgoing ones.

Further investigation (measurement or simulation) is required to check the validity
of such assumption.

8.6. Ethernet Channel Acquisition Delay

Boxes 2, 3, and 4 in Figure 18 represent the average delays associated with the
channel acquisition delays in CSMA/CD protocol for our LAN configuration.

The equation for the normalized transfer time in the CSMA/CD protocol is given
by:

59

Local Host
‘send Message; Recelve
Start timer * Message;
Stop timer
TCP * * TCP
P + * P
i
Network Network
Interface Interface
Figure 19: Test Setup to Measure Communication Layers Delay
(4)
[(7t/m?)+(4e+2)a+5a% +4e(2e—1)a?]
tf/m-_—'p -
2{1-p[Ll+(2e+1)a|}
1—e~%P)(2ae 1 —6a+2 a
+1+2ca—-(I /p]+_
2[FP(A)6‘P“_1~1+6‘29"] 2
where:
tf Transfer delay in seconds.
m The average frame (packet) length (data plus overhead), in units
of time.
Fi Defined as Am.
A Total average traffic, in packets/sec.

it The second moment of the packet length distribution.

60

a The ratio of the propagation delay r to the message transmission
length m, r/m.

The function Fp().) is the Laplace transform of the packet length distribution f(¢):
F(A):f flt)e Mdt
P 0

Assuming the frame length is exponentially distributed, with average length m, we
then have;

F,(A)

(L+9)
and
7t /m?=2

Equation (4) is credited to Bux IBUX] which is modified slightly from the original
derivation by Lam LAM]. Lam used a discrete-time analysis based on slots 2r
units of time wide, where r is the end-to-end delay along the bus.

Average Transfer Delay in Subnet 1

The network traffic in subnet 1 represented by Box-2 in Figure 18 was monitored
for eight weekdays between 10:00-11:00 A.M. The end-to-end distance for this sub-
net was estimated at 500 meters.

With the help of the Novell's LANALYZER (a dedicated machine for network traf-
fic monitoring) overall traffic of our subnet was recorded at one minute time inter-

val.

The following observation were made at the end of our test;

Average Packet Rate [Packet/Sec|: 217.5

Average Packet Length [Bytes|: 151.7

Given the above information and equation (4) the average transfer delay per

packet in subnet I (Box-2) is estimated at 0.126 msec.

Average Transfer Delay in Subnet 2

The network traffic in subnet 1 represented by Box-4 in Figure 18 was monitored
for five weekdays between 10:00-11:00 A.M. The end-to-end distance for this subnet

was estimated at 500 meters.

The following observation were made at the end of our test with the help of
Novell’'s LANALYZER;

Average Packet Rate [Packet/Sec|: 186.5

61

Average Packet Length [Bytes|: 250.6

Given the above information and equation (4) the average transfer delay per
packet in subnet 2 {Box-4) is estimated at 0.210 msec.

Average Transfer Delay in Backbone Ethernet

Box-3 in Figure 18 represents the backbone Ethernet for the entire site connecting
various subnets together.

Previous studies [Pabrai] provided us with the following observation:
Average Packet Rate [Packet/Sec]: 455.28
Average Packet Length [Bytes]: 163.2

Given the above information and equation (4) the average transfer delay per
packet in the backbone Ethernet (Box-3) is estimated at 0.142 msec.

62

9. Model Validation

Using the emulX application, series of measurements were done to obtain the
average delay for an Ethernet packet of size 100 bytes which is close to the
average packet size observed in our LAN configuration. The program simply sends
Ethernet packets of 100 bytes at 1 minute interval awaits a response from the
server which is told to reply with a message of the 100 bytes also. The program
was instructed to send messages in one minute interval. Such long gap between
each measurement was necessaty in order to not violate the Poisson arrival as-
sumption used in our M/M/1 queuneing model.

The emulX client records and displays the elapsed time (round trip delay) between
the request sent and reply received. The average delay experienced by such packet
going from the client to the server is then half of the round trip delay.

Using a data set of 40 points the average delay measured for a packet going from
the client application to the server application in our LAN configuration is es-
timated to be 2.75 msec with standard deviation of 1.63.

Total delay predicted from our LAN analytical model (queuing delay in the routers
(0.71 msec), channel acquisition delays (0.48 msec) , and communication layer
delays (1.1 msec)) is 2.28 msec. The average analytical delay estimate is about
16% away from direct transfer delay measurement which could be the result of fol-
lowing assumptions:

o Exponential Distribution: In modeling of the Ethernet Channel ac-
quisition the assumption of exponential packet length distribution was
used. Many studies have shown that the packet length distribution in a
LAN is more likely to be a bimodal than an exponential one. Direct
measurement of subnet 1 and 2 confirmed such observation. The ex-
ponential packet length distribution assumption was used in order to
reach a close form solution in our queuing analysis.

The same argument applies also to the exponential packet length dis-
tribution assumption used in modeling of our routers as M/M/1 queues.
However, as shown earlier in Figures 14 and 15 the observed packet dis-
tribution is not that far away from the exponential distribution one.

e Communication Layer Delay Estimate: Boxes 1 and 5 in Figure 18
represent the communication layer delays a packet would experience
within each host. In combining the average communication layer delay
estimate in each host to the average estimates predicted by other queues
in a sense we are modeling Boxes 1 or 5 as a M/M/1 queue. There are
no indications as to correctness of this assumption. Again this assump-
tion was necessary in order to reach a simple close form solution for our
analytical model.

Finally due to the highly dynamic nature of our LAN configuration it is essential
to increase the frequency and number of observations made in obtaining the routers
and the subnets average traffic profiles as well as the average round trip delay es-
timate used in validation of the analytical model.

63

10. Conclusion

More measurements and sample points are required to obtain better estimates on
average values used in our model analysis and validation. Random and bursty ac-
tivities are typical in a LAN environment and a large amount of measurement is
really required to obtain a reasonable and repeatable average value.

The flooding experiment should also be modified as described earlier for a better
estimate on the router’s throughput.

More experiments are needed for larger compilation of graphical primitives.
However, given the network load and delays involved with these few graphical
primitives, one can clearly see the advantages of distributed application paradigm
employed in design of X protocal. The low network load and delay associated
with the graphical primitives such as resizing a window, moving a window, copying
from one window to another, and drawing points or lines are the result of distribu-
tion of the graphic task between the client (X application) and the server (X dis-

play).

X protocol was designed to operate efficiently for a bitmapped display with
predefined geometrical shapes such as lines, points, and rectangles of which a two
dimensional bitmapped display is is often comprised.

One can also see from tables 1 and 2 that drawing images could impose a hefty
load on the network with long delays specially for the WAN model. This is par-
tially due to their inherent large size, (a Group 3 fax is about 1 Mbytes of data
and a digitized color photograph is easily over 10 Mbytes) but also due to the
lack efficient mechanism in handling the images.

There are many possibilities for reducing network load and delay. Data Compres-
sion can be implemented at the hardware level between the client and the server
to reduce the data transfer. Display PostScript allows arbitrary shapes to be scaled
rotated, and clipped. Downloading procedures to handle pointer and device request
locally and thus eliminating round trip delays for each increment of the pointer
movement or to handle the redrawing of the objects are all solutions this problem.

The X protocol high degree of extensibility, hardware independence, network trans-
parency, and its good use of bit mapped display are some of the important reasons
for its success. It has clearly filled a void in the distributed graphical applications.
However, as Ritchie® cleverly points out, "Sometime, even when you fill a vacuum,
it still sucks.”

6Dennis Ritchie’s keynote speech at 1991 Summer USENIX conference

64

11. Future Direction

More sampling of the network traffic is needed to obtain a better estimate on key
network characteristics in our LAN configuration. Specifically the measurement on
the average delay between client and server should be conducted for a longer
period of time as this value is the only way of validating the analytical model.

There is also a definite need for adopting an accurate model for prediction of
Ethernet channel acquisition delay.

The analytical analysis could be extended to include WAN configuration. This re-
quires further investigation on the packet distributions in our WAN model.

Finally it would be very interesting to extend the modelling analysis to include the
queueing delays (Figure 6) involved in the X appiication and X server.

12.

10.

11.

12.

13.

14.

L5.

16.

References

[LIDINSKY| ~Data Communication Needs,” Lidinsky, IEEE Network
Magazine, March 90

INYE|] "Networking and the X Window System,” Adrian Nye

[SCHEIFLER| The X Window System, by Robert Scheifler and Jim Get-
tys, ACM Journal Transactions on Graphics, Vol. 5, No.2, April 1987.

[MIT| "X Window System Protocol,” MIT X Consortium Standard, X
Version 11, Release 4

(X11PERF! ftp anonymous uunet.uu.net, UUNET Communications Ser-
vices

[TCPDUMP| ftp-anonymous sol.ctr.columbia.edu
[XSCOPE| ftp-anonymous sol.ctr.columbia.edu

[TRACEROUTE| ftp-anonymous sol.ctr.columbia.edu
[SNMP| SNMP RFC 1098

'ROSE]|
Rose, M.T.: The Simple Book: An Introduction to Manaegement of

TCP/IP-based internets, Prentice Hall, Englewood Cliffs, New Jersey,
1991.

[SCHWARTZ| Telecommunication Networks, Mischa Schwartz, Addison
Wesley, 1988.

[TANENBAUM| Computer Networks, Second Edition, Andrew Tanen-
baum, PRENTICE HALL, 1988.

[LITTLE| Little, D.: “A Prof for the Queuing Formula: L=A*W.’ Oper.
Res., vol. 9, pp. 383-387.

(KLEINROCK] Communication Nets, Kleinrock, L. New York: Dover,
1964.

[PABRAI| Chris O’Reilly and Uday Pabrai, Report on the X terminal
Xhibition (EN00290), Computing Division, Fermi National Accelerator
Laboratory, 1990.

IMETCALFE| R.M. Metcalfe and D. R. Boggs, ‘“Ethernet: Distributed
packet switching for local computer network,” Commun. Ass. Comput.
Mach., vol. 19, pp. 395-404, July 1976.

635

66

17.

18.

19.

20,

21.

22

13.

‘BUX| W. Bux, “Local-Area Subnetworks: A Performance Comparison,”
IEEE Trans. on Comm., vol. COM-29, no. 10, Oct. 1981, 1465-1473.

LAM} S. S. Lam, “Carrier sense multiple access protocol for local net-
works,”” Computer Networks, vol. 4, pp. 21-32, Feb. 1980. 'TOBAG]|
F. A. Tobagi and V. B. Hunt, ‘‘Performance analysis of carrier sense

multiple access with collision detection,” Comput. Networks, vol. 4, pp.
245-259, Oct./Nov. 1980.

[FRANTA| Local Networks, W.R. Franta, Imrich Chlamtac, Lexington
Books, 1981.

IJACKSON] J. R. Jackson, ““ Job Shop-like Queueing Systems,” Manage-
ment Science, vol. 10, no. 1, pp. 131-142, 1963,

SURY R. Suri, RObustness of queueing Network Formulas, Journal of
the ACM, 30(3), 564-594.

JAIN} Raj Jain, THE ART OF COMPUTER SYSTEMS PERFOR-
MANCE ANALYSIS, Wiley, 1991.

Bibliography

"An Analysis of TCP Processing Overhead,” IEEE Communication
Magazine, June 1989.

Computer Networks, Tanenbaum

”Data Communication Needs,” Lidinsky, [EEE Network Magazine, March
90

UNIX NETWORKING PROGRAMMING, STEVENS.

Probability & Stasistics with Reliability, Queuing, and computer Science
Applications, Trivedi

Queuing Network, Walrand

Telecommunication Networks, Schwartz

. "User-Process Communication Performance in Networks of Computers,”

IEEE Transactions on Software Engineering, 1988,

X Window System Protocol, MIT X Conscrtium Standard, X Version
11, Release 4

10

11

12

13

14

. X Version 11, Release 4 Source Code. MIT Project Athena.

. X WINDOW SYSTEM, Scheifler and Gettys
. X Protocol Reference Manual Vol. 0, O’Reilly
. Networking and the X Window System, Adrian Nye

. XLIB programming Manual Vol 1, O’Reilly

a7

This Page Intentionally Left Blank

Appendix A

emulX: X Client-Server Emulator

This appendix provides the source code for the emulX application.

/* The following code measures the network delaye associated
#* between an X client and an X server

*/

#include (stdio.h>
#include <string.h>
finclude <stdlib.h
#include <sys/types.h>
#include <sys/socket.h)
#include <netinet/in.h>
#include <{netinet/tcp.h>
#include <{arpa/inet.h}
#include <netdb.h>
#include <rpc/rpc.h>
#include <math.h>
f#include <netinet/in.h>
f#include <sys/param.h)

int readn();

int readline();

int writen();

int client session ();
int fltcompare();

void usage();

void Xemu_ server() ;

veid Xemu_server seasion ();
void Xemu_client();

int Xemu client sessgion()

void report_stat(}; /* doee statietical analysis «/

void t _start(); /* start timer =/

void t_staop(); /# stop timer »*/

void deemon_start () ; /* make this a daemon */

double t_getrtime(); /* return real time (elapsed) in seconds #*/
char »getargu (); /* get the arguments fromo command line =/

fidefine MAXSAMPLE 5208

#define MAXQUE 5

#define MAXLINE 8@

#define SERVER_PORT 7281
fidefine NUMCELL 1@

fifndef INADDR NONE

fidefine INADDR NONE e@xffffffff

A-2 emulX: X Client-Server Emulator

#endif

int replysize, reqsize, interval;

int count=l;

char »display;

double t_arr [MAXSAMPLE] ; /* arrey of sample network trip delays in msecond

main (arge, argr)
int arge;
char +argv([];

{
char =*p;
systen({"date");

if (argc==1)
usage (argv{@]);
else if (arge == 2 k& !stremp(argv (1], "server™)) {
/* must act as an X server =/
printf ("\nEBmulating an X server Networking Interface\n\n");
daemon_start(); /+ make this a daemon servers/
Xemu server();

}

else { /» muet act ae an X client «/

i? (!(p=getargu("-d",argc,argv)))
ueage(argr(@]);
display = p;

if (!(p=getargu("-q",argc,argv)))
usage (argv{#]);
reqsize = atoi(p);

if (!{p=getargu("-r",argc,argv)))
usage (argv(®]);
replysize = atoi{p);

it (Y(p=getargu("-c",argc,argv)))
usage (argr [@]);
count = atoi(p);

if (!{p=getargu("-i",argc,argv}))
usage (argv [@]);
interval = atol(p);

priontf ("\nEBmulating an X client Networking Interface\n\n");
printf ("Sending requeets to: %s \n",display);
printf ("request size: %d [byte] \n",reqsize);
printf ("reply aize: %d [byte] \n",replysize};
printf ("count: %d \n",count);
printf ("interval [sec]: %d \o\n",interval);
Zemu client();
}
1

void Xemu_client()

{

int flag, length, sockfd;
unsigned long inaddr;

emulX: X Client-Server Emulator

struct sockaddr in mapper_addr,serv_addr;
struct hostent »hostptr;
char *message;

if { (sockfd = socket (AF INET, SOCK_STREAM, &)) < #){
fprintf(stderr,"error in creating stream socket \n");
exit(1l);

}

bzero((char *) &serv addr, sizeof (serv_addr));
serv_addr.ein family = AF_INET;
serv_addr.sin_port = htons (SERVER PORT);

if ((inaddr = inet addr(display)) != INADDE_NONE) {

1

/= it is in dotted-decimal format =/
beopy ({char *) &inaddr, (char *) &serv_addr.sin_addr,
siseof (inaddr));

else {

/* it is not in dotted-decimal format =/

if { (hostptr = gethostbyname(dieplay)) == *\@’'){
fprintf(stderr,"gethostbyname: error for server host %s \n", display);
return;

}
beopy (hostptr->h addr, (char *) &serv_addr.sin_addr, hoetptr->h_length);

if{ connect(sockfd, (struct sockaddr +) &serv_addr, sizecf (serv_addr)) < @) {
fprintf(stderr,"error in connecting to gerver \n"};
exit(l);

length=sisecf (serv_addr};
if (getsockname (sockfd, (struct sockaddr *)Reerv_addr,&length) < @)
fprintf (stderr," error in getting socket name \n"};

printf ("\n\nelient listening on ephemeral port: %d \n\a", serv_addr.sin_port);

if (reqeise > replysize)
length = regqsize;

else
length = replysize;

if { (message=malloc(length+1)) == a){
printf ("error im by malloe() \n");
exit(1});

}

nessage [reqsize+replysize]="\9%;

if (Yemu_client session{sockfd,message))
report stat();

else
err ("error in client session');

clogse(sockfd);

int Yemu client_session{sockfd, message)

int sockfd;
char *message;

A-4 emulX: X Client-Server Emulator

int n;
int to goj
char line[MAXLINE];

line [MAXLINE-1]="\@8";

sprintf(line,"d %d\n",reqsize,replysize);
n = strlen(line);

if (writen(sockfd,line,n) != n){
/= eend the request and reply size to servers/
fprintf (stderr,"session: writen error to socket \n"};
return (&) ;

}

to_go = count;
while{to go}({

n=reqsize;

t_start()

if (writen(sockfd,message,n} != n){
fprintf {etderr,"client_ression: writen error to socket \n");
return(d) ;

}

n= readn(sockfd, message, replysize);
t_stop();

priotf(".");
fflush(etdout);

if ((n != replysize) |! (n<®)){
print{ ("client_sesgion: error in reading the server reply \n");
raeturn (@) ;

}

t_arr[to go--]=t getrtime()*12@8.&; /« save the elspsed time in msec =/
if (interval) sleep{interval);

}

return(1);

}

void Xemu_server ()

{

int sockfd,pewsockfd;

int flag;

int clilen;

struct sockaddr_in serv_addr, cli addr;

if ((sockfd = socket (AF INET, SOCE STEEAM, @)) < 8){
fprintf(stderr,"error in creating stream socket \n");
exit(1);
}

bzero((char *) &serv_addr, sizeof (serv_addr));
serv_addr.sin_family = AF_TINET;
serv_addr.sin_addr.s_addr = htonl (INADDR_ANY);
serv_addr.ein_port = htons (SERVER_FORT) ;

emulX: X Client-Server Emulator

if (bind(sockfd, (struct sockaddr «) Eserv_addr, sizeof(serv _addr)) < @ 1 {
fprintf (stderr,"error in binding \n");
exit(1); : -
}

flag=1;
if (metsockept (sockfd, ITPPROTO_TCP, TCP_NODELAY, {char «) &flag,
sizecf (flag)) < @) {
fprintf (stderr,"error in setting stream socket \n");
exit(l);
}

if (listen(sockfd,MAXQUE)<8) {
printf ("error in listening \n");
exit(l);

1

for(;;){
clilen = sizeof (cli_addr);
newsock?d = accept({sockfd, (atruct sockaddr +) &cli addr, &clilen);
/* blockivg =*/

if { newsockid > @){
Yemu gerver_session(newsockfd);
close(newsockfd);

}

elre{
printf("accept error\n");
sleep(l};

}

1
}

void Xemu_server_ session (sockfd)
int sockfd;
{

int i, n, size, fd;

int upcoming, outgoing;

char line [MAXLINE];

char =buff, =*ptr;

line [MAXLINE-1]="\@";
n=readline(scckfd,line,MAXLINE); /» read the number of bytea coming */
if (on == @){

printf ("session: Unable to read number of upcoming bytee \n");

return;
}
upcoming = strtol (line, &ptr, 18);
if (upcoming == @)

returnj

ocutgoing = strtol (ptr, &ptr, 18);

if (upcoming > outgoing)
gize = upcoming;

else
size = outgoing;

if { (buff=malloc{size+l)) == @)}{
printf ("error by meliloc() \n");
exit(1);

}

for(;;){

A-6 emulX; X Client-Server Emulator

if ((n=readn(sockfd, bufi, upcoming)) != upcoming || (n == @))}
return; /+ EOF =/

if {({p=writen(sockfd,buff,outgoing)) != outgoing){
fprintf(stderr,"session: writen error to socket \n");
return;

}

}
}

int writen{fd, ptr, nbytes)
register int fd;

register char »ptr;
register int nbytes;

{

int nleft, nwritten;

nleft = nbytes;
while { nleft > @8) {

nwritten = write(fd,ptr,nleft);
if (nwritten <= @)

return{nwritten) ;

nleft —= nwritten;
ptr += nwritten;

}

return{nbytes-nleft);

int readn (fd, ptr, nbytes)
register int fd;
register char »ptr;

register int nbytes;

{

int nleft, nread;
nleft = nbytes;
while (nleft > @8) {

nread = read{fd,ptr,nleft);
if (oread ¢ @)

return(nread) ; /% error, return ¢ & =/
else if { oresd == @)
break; /= BOF */
nleft -= nread;
ptr += nread;
}
return{nbytes - nleft); /* return »= @ =/
}

int readline (fd, ptr, maxlen)

emulX: X Client-Server Emulator

register int fd;
register char »ptr;
register int maxlen;

{

int n,rc;
char c;

for (n=l; ndmaxlen; n++) {
if ((re=read(fd, &e,1)) == 1) {
*pLr++ = c;
if (e == '"\n')
break;
} else if (re == @) {
it (n==1)
raturn () ; /* EOF, no data read «/
else
break; /* EOF, some data was read «/

} else
return(-1); /* erraor =/

}

ptr = #;
return{no) ;

b

void report_stat()
{

int i, imin, imax, j, histog[NUMCELL+1]};
double subrange = @, avg=0, std _dis=@;

/* sort it »/
qeort(t_arr+l,count,sizeof (double),fltcompare);

for(i = 1; i(=NUMCELL; i++)
histog[i]=#;

imin = count * .1;
imax = count » .@9;

subrange = (t_arr[imax] - t_arr[imin]) / NUMCELL;
/* get the average =/
printf ("\n \nSample time delay points in msec\n");

for (i=1; i <= count; i++){
if (i%18 = 8)
priontf("%.1f ",t arr{i]);
else
printf ("%.1f\n\n",t_arr{i]);
if (i >= imin && i (= imax){
histog[(int) ({t_arr[i]-t_arr{imin])/subrange)
avg += t_arr{i];
}
}

avg = avg / {imax-imin+l);

+ 1] ++;

A-8 emulX: X Client-Server Emulator

for {(i=imim; i <= imax; i++)
std dis += pow((t_arr[i]-avg), (double)2.2);

std_dis = pow((std dis /(imax-imin)), (double)®.B);
printf ("\n\n Number of sample points: %d\n", imax-imin+1);
printf (" Total number of cells: %d\n Cell size: %8.1f\n" NUMCELL, subrange);

for { i = 13 i¢= NUMCELL; i++){

priontf ("\n%8.1f-%8.1¢f " ,t _arr{iminj+(i-1)*subrange,

t_arr[imin]+ (i) *subrange) ;
for (j = 1; j <= histog(i];j++)
printf(™+");

1
printf ("\n\n Median delay: %.3f \n",t_arr[(imax-imin+1)/2]);
printf ("\n Average delay (msec): %.3f \n Standard deviation: %.3f \n\n", avg, s

printf (" Overall bit-rate{Eb/sec]: %.3f \n", (reqsize+«8/1024)x=1888.8/avg);

#include <astdio.h>
#include <signal.h}
#include <sye/param.h)
#include <errnoc.b>
extern int errno;

#ifdef SIGTSTP /+ true if BSD system »/

#include <sys/file.h>
#include <(woysfioctl.h>

fendif

/» detach a daemon process from login session context »/
void deemon start()

{
register int childpid, fd;

if (getpid() == 1)
goto out;

/* Ignore the terminal stop signals (BSD) =*/

#ifdef SIGTTOU
signal (SIGTTOU, SIG_IGN};
#endif

#ifdef SIGTTIN
signal {(SIGTTIN, SIG_IGN);
#endif

#ifdef SIGTSTP
signal (SIGTSTP, SIG_IGN);
#endif

#ifdef SICHUP

emulX: X Client-Server Emulator

signal (STGHUP,SIG_IGN);
#endif

if ((childpid = fork()) < @)
fprintf {(stderr,"can’t fork first child \n");
else if (childpid > @)
exit(d); /* parent =/

/# firet child process =/

#ifdef SIGTSTP /+ BSD =/
if (metpgrp(d, getpid()) == -1)
exit(l);
if ({(fd=open("/dev/tty",0 RDWR)) >= 8) {
ioctl(fd, TIOCNOTTY, (char *)NULL); /+ lose controling terminal »/
close(fd);

}
#else /» SYSTEM V «/
if (setpgrp() == -1)
exit(1);

signal (SIGHUFP ,SIG TIGN) ;
if ((childpid = fork()) < @)
exit(1);
else if (childpid > &)
exit (#); /+* firet child =/
/% second child =/
#endif

out:

for (fd=#; fd < NOFILE; fd++)
close{fd);

errno=08;
chdir("/");
umask (@) ;

}

int flteompare (i,j)
double =i, «j;

{
}

return{(int) {(*i - =j));

char *getargu(key, arge, argv)
char +key;

int argce;

char *argv{];

int ij

A-10 emulX: X Client-Server Emulator

for (i=1l; i<argc; i++){
if (atremp(key, argv[i]) == 8){
if (strchr{argv[i+1], '-') == @)
retura{argv[i+l]);
elge{
fprintf (stderr,"error in argument syntax \n");
exit(1});
}
}
}

/» found nothing =/

return (9);

void usage (name}

char *name;

{
printf ("\n\nUsage: %s server (Network Emulate an X server) \o\n",name);
printf ("\n\nUsage: %s options (Network Emulate an X Client) \zn\n",name);
printf ("options: -d display-name (Xserver name) \n");
printf (" -q request-size [byte] \n");
printf (" -r response-size [byte] \n");
printf (" -¢ count \n");
printf (" -1 interval(sec) \n\n");
exrit(@);
}

The following is the source code for the time function

#include <stdio.h)>
#include <{sys/time.h>
f#include <sys/resource.h>

static struct timeval time_start, time_stop; /* for real time =*/
static struct rusage ru_start, ru_stop; /* for user and sys time */

static double tstart, tstop, seconds;

IL)
*= gtart the timer.
#« We don’t return anything to the caller, we just store some information for the

* gtop timer routine to access.

*/
void err();

void
t_start()

{

if (gettimeofday (%time start, (struct timezone ») @) < &)
err("t_start: gettimeofday() error");

if {getrusage (RUSAGE SELF, &ru start) < @)

emulX: X Client-Server Emulator A-11

err{"t start: getrusage() error?);

}
/-

= Stop the timer and save the appropriate information.
“/
void

t_stop()

if (getrusage (RUSAGE _SELF, &ru _stop) < #)
err("t_atop: getrusage() error®};

if (gettimeocfday (&time stop, (struct timezone *) &) < @)
err{"t stop: gettimeofday() errorm®);

¥
/-

* Return the user time in seconds.

./

double
t_getutime()

tatart = ((double) ru start.ru_utime.tv_sec) » 10800080.8 +
ru_start.ru_utime.tv_usec;

tstop = {(double) ru_stop.ru_utime.tv_sec) +« 1280¢20.0 +
ru_stop.ru_utime.tv_usec;

seconds = {tstop - tstart) / 19009838.8;

return (seconds) ;

}
/=

*» return the system time in seconds.

“/
double
t _getstime()
tetart = ((double) ru_start.ru_stime.tv_sec) = 1009908.0 +

ru_start.ru_stime.tv_usec;

tatep = ((double) ru stop.ru stime.tv_sec) * 1880088.9 +
ru_stop.ru_stime.tv_usec;

seconds = (tstop - tstart) / 1600049.8;

return(seconds) ;

e

+ return the real (elepsed) time in seconds.

w/ -

double

A-12 emulX: X Client-Server Emulator
t_getrtime()

tstart = ((double) time start.tv_sec) » 1080080.0 +
time start.tv _usec;

tatop = ((double) time stop.tv _sec) =» 1080988.8 +
time stop.tv usec;

seconds = {tstop - tstart) / 1000880.0;
return(seconds) ;

}

void
err(s)
char =*s;

fprintf (stderr,"%a \n",s);
}

Appendix B

X Requests synopsis and Raw Data

This appendix provides the synopsis and the raw data collected for all the X re-
quests generated by the modified zIIperf.

Common X Setup Calls

The following is the listing of common setup X calls within the ziiperf program.

s XOpenDispley: Connects the client to the server controlling the hardware
display through TCP, or UNIX or, DECnet streams.

Synopsis

Display *XOpenDisplay(display_name)

char* display name;

Arguments

o display name Specifies which server to connect to. If
display name is NULL then the Xlib will try to connect to the X
server specified by the environment variable DISPLAY with the
format of host:server.screen, where host is the Internet address or
name of the X server, server is the server number on that machine
(for single user workstation the server is set to 0) and optional
sereen, the screen number on that server.

Experimental Data:

X Requests synopsis and Raw Data

X0penDisplay()

Xclient.Sur > Xeserver.SiliconG: S 686880203:6880B0@80(P) win 4898 <(mss
Yeerver.S3iliconG > Xclient.Sun: S 138300800@:13838088008(8) ack 6882390
Iclient.Sun > Xserver.SiliconG: . ack 1 win 4296

Xclient.Sun > Xserver.SiliconG: P 1:18{12) ack 1 win 4008
Igerver.SiliconG > Xeclient.Sun: P 1:18B5(1B4) ack 13 win 16384
¥client.Sun > Xserver.SiliconG: P 13:57(44) ack 185 win 49898
Xserver.SiliconG > Xclient.Sun: P 186:217(82) ack 67 win 16384

Xeclient.Sun > Xserver.SiliconG: . ack 217 win 4098

o XCreateSimple Window: Creates an unmapped [nputQOutput subwindow of
the specified parent window.

Synopsis

Window XCresteSimpleWindow(display, parent, x,y, width, height, border_

border, border, background)

Display display;

Window parent;

int x,¥;

unsigned int width, height, border_width;
unsigned long border;

unsigned long background;

Arguments

o

display Specifies a pointer to the [isplay; returned from
XOpenDisplay.

parent Specifies the parent window I[D.

z,y Specifies the x and y coordinates of the upper-left pixel of the
new window’s border relative to the origin of the parent.

undth, height Specify the width and height, in pixels, of the new
window.

border _width Specifies the width, in pixels, of the new window’s
border.

border Specifies the pixel value for the border.

background Specifies the pixel value for the background of the win-
dow.

Experimental Data:

X Requests synopsis and Raw Data

XCreateSimpleWindow()

YXclient.Sun > Xserver.SiliconG: P 80:133(44) ack 346 win 49808
Xserver.SiliconG > Xclient.Sun: P 345:377(32) ack 133 win 168384
Xclient.Sun > Xserver.SiliconG: . ack 377 win 4988

o XChange WindowAttributes: Changes any or all of the window attributes
that can be changed.

Synopsis

IChangeWindowAttributes (display, w, valuemask, attributes)

Display »display;

Window w;

unsigned long valuemask;
ISetWindowAttributes xattributes;

Arguments
o displey Specifies a pointer to the Display; returned from
XOpenDisplay.
o w Specifies the window [0,
o valuemask Specifies which window attributes are defined in the
attributes argument. The mask is made by combining the ap-

propriate mask symbols listed in the Structure section defined by
XSetWindowAttributes using bitwise OR (]).
in-

o attributes Window attributes to be changed. The valuemask

dicates which members in this structure are referenced.

Experimental Data:

XChange¥indewAttributes ()

Yclient.Sun > Xeerver.SiliconG:
Igserver.SiliconG > Xclient.Sun:
Xelient.S5un > Xserver.SiliconG:

P 133:181(28) ack 377 win 4808
P 377:489(32) ack 181 win 18384
. ack 499 win 4098

s XMapWindow: Maps a window, making it eligible for display.

Synopsis

B-4 X Requests synopsis and Raw Data

IMapWindow(display, w)

Display #display;
Window w;

Arguments

o display Specifies a pointer to the Display; returned from
XOpenDisplay.

o w Specifies the window ID.

Experimental Data:

Xclient.Sun > Xserver.SilicomG: P 181:173(12}) ack 4890 win 4098
Xserver.S5iliconG > Xclient.Sun: . ack 173 win 18384
Xserver.S8iliconG > Xclient.Sun: P 489:441(32) ack 173 wip 18384
Xclient.Sun > Xserver.SiliconG: . ack 441 win 4898

o XWarpPointer: Move the pointer suddenly from one point on the screen
to another.

Synopsis

XWarpPointer (display, src_w, dest_w, sre_x, src_y, src_width,
src_height, dest_x, deat_y)

Display *display;

¥Window arc_w, dest w;

int ere_x, grc_y;

unsigned int srec_width, src_height;
int dest_x, dest_y;

Arguments

o display Specifies a pointer to the Display; returned from
XOpenDhsplay.

o src__w Specifies the D of the source window. Could be None.
o dest_w Specifies the [D of the destination window. Could be None.

o src_z, src _y Specify the x and y coordinates within the source
window,

X Requests synopsis and Raw Data

o src_width, src_hight Specify the width and height in pixels of the
source area.

o dest_r, dest y Specify the destination x and y coordinates within
the destination window. If dest w is None, these coordinates are

relative to the root window of dest w.

Experimental Data:

X¥WarpPointer ()

Iclient.Sun > Yserver.Silicon@: P 281:300(28) ack 589 win 4808
Xgerver.SiliconG » Xclient.Sun: . ack 389 win 168384
Xgerver.SiliconG > Xclient.Sun: P 5669:881(32) ack 389 win 18384
Xclient.Sun > Xserver.SiliconG: . ack 681 win 4298

e« XCreateGC: Creates a new graphics resource in the server.

Synopsis

GC XCreateGC(display, drawable, valuemask, values)

Digplay =display;
Drawable drawable;
unesigned long valuemask;
XGCValues *values;

Arguments

o display Specifies a pointer to the Display; returned from
XOpenihsplay.

o drawable Specifies a drawable. The created GC can only be used to
draw in drawables of the same depth as this drawable.

o valuemask Specifies which members of the GC are to be set using
information in the wvalue structure.

o values Specifies a pointer to an XGCValues structure which will
provide components for the new GC.

Experimental Data:

X Requests synopsis and Raw Data

ICreateGC()

Yclient.Sun > Yserver.SiliconG: P 2389:337(28) ack 881 win 49908

Xserver.SiliconG > Xclient.Sun: P 801:833(32) ack 337 win 18384

Xclient.Sun » Xserver.SiliconG: ack 6833 win 4068

o XDestroySubwindows: Destroys all descendants of the specified window

(recursively).

Synopsis

XDestroySubwindows (display,w)

Display =display;
Window w;

Arguments

o display Specifies a pointer to the [Display; returned from

XOpenihisplay.
o w Specifies the window ID.

Experimental Data:

XDestroySubwindows ()

YXclient.Sun > Xserver.SiliconG: P 493:686(12) ack 793 win 4098
Xgerver.SiliconG > Xclient.Sun: P 793:826(32) ack 5856 win 18384
Xclient.Sun > Xserver.S8iliconG: ack 826 win 48908

¢ XClear Window: Clears a window, but does not cause exposure events.

Synopsis

XClearWindow(dieplay,w)

Digplay »display;
¥indow w;

X Requests synopsis and Raw Data

Arguments

o display Speciiies a pointer -

XOpenDisplay.
o 1w Specifies the window ID,

Experimental Data:

to the Displey; returned from

XClearWindow()

Xclient.Sun > Xserver.SiliconG: P
Xserver.3iliconG > Xelient.Sun:
Xserver.8iliconG > Xeclient.Sun: P
Xeclient.Sun > Xserver.SiliconG:

605:626 (20) ack 8256 win 4098

. ack 626 win 16384

825:857(32) ack 525 win 18384

. ack Bb7T win 4898

o XQGetWindowAttributes: returns the
ing the current window attributes.

Synopsis

XWindowAttributes structure contain-

Diesplay =diseplay;
Window w;

Status X@etWindowAttributes (display, w, window_attributes)

IWindowAttributes *window mttributes; /« RETURN »/

Arguments

o display Specifies a pointer
XOpenDisplay,

o w Specifies the window I[D.

o window attributes Returns a

to the [Nsplay; returned from

filled X WindowAdtiributes structure,

containing the current attributes for the specified window.

Experimental Data;

B-8 X Requests synopsis and Raw Data

IGetWindowAttributes ()

Xclient.Suen > Xserver.S8iliconG:
Xserver.8iliconG » Xclient.Sun:
Xclient.Sun > Xserver.SiliconG:
Xgerver.S8iliconG > Xclient.Sun:
Xclient.8un » Xserver.SiliconG: 541:545(4) ack 933 win 4208
Xserver.SiliconG > Xclient.Sun: 933:985(32) ack 545 win 18384
Xclient.Sun > Xeerver.Silicon@G: . ack 985 win 4898

5256:533(8) ack 857 win 4998
857:901 (44) ack 533 win 18384
633:541(B) ack 6¢1 win 4298
081:933(32) ack 641 win 18384

- B B B - D

o XFreeGC: Frees all memory associated with a graphics context, and
removes the GC from the server and display hardware.

Synopsis

XFreeGC{diaplay, gc)

Diaplay =»display;
GC geoj;

Arguments

o display Specifies a pointer to the Display; returned from
XOpenDisplay.

o gc Specifies the graphics context to be freed.

Experimental Data:

XFreeGC()

Xclient.Sun > Xserver.SiliconG: P 545:6B7(12) ack 985 win 4098
Xserver.S8iliconG » Xclient.Sun: P 9685:987(32) ack 557 win 18384
Xclient.Sun > Xserver.SiliconG: . ack 987 win 4996

e XDestroyWindow: The window and all inferiors (recursively) are
destroyed, and a DestroyNotify event is generated for each window.

Synopsis

IDestroyWindow{display, w)

Display =*displey;
Window wi

X Requesis synopsis and Raw Data B-9

Arguments

o displey Specifies a pointer ~ to the Display; returned from
XOpenlisplay.

o w Specifies the window ID to be destroyed.

Experimental Data:

XDestroyWindow()

Xclient.Sun > Xserver.SiliconG: P 6688:581(12) ack 18328 win 4296
Iserver.SiliconG > Xclient.Sun: . ack 581 win 16384
Xserver.SiliconG > Xeclient.Sum: P 1229:1881(32) ack 681 win 16384
Xclient.Sun > XIserver.SiliconG: . ack 1881 win 4866

o closing a network connection.

Experimental Data:

Xclient.Sun » Xaserver.S8iliconG: F 597:5087(8) ack 1882 win 49986
Xserver.SiliconG > Xelient.Sun: . ack 598 win 18384
Xserver.SiliconG > Xclient.Sun: F 1993:1863 (%) ack 588 win 18384
Xclient.Sun > Xserver.SiliconG: . ack 1094 win 49866

Graphical Primitives X Calls

The following is the listing of all the grephical primitives’ X calls involved in the
zllperf program:

e XDrawPoints: draws one or more points into the specified drawable.

Synopsis

XDrawPoints (display, drawable, gec, pointe, npoints, mode)

Display =display;
Drawable drawable;
GC gc;

Xpointe =points;
int npoints;

int mode;

Arguments

B-10 X Requests synopsis and Raw Data
o display Specifies a connection to an X server; returned from
XOpenlhsplay.
> drawable Specifies the drawable (e.g., window).
> gc Specifies the graphics context.

o points specifies a pointer to an array of XPoint structures contain-
ing the positions of the points.

> npoints Specifies the number of points to be drawn (npoionts=
1000).

o mode Specifies the coordinate mode.

Experimental Data:

Xclient.Sun > Xserver.SiliconG: . 281:1741(1460) ack 5Bl win 4886
Xclient.Sun > Xserver.S3iliconG: 1741:3201 (1483) ack 5Bl win 40696
Xelient.Sun > Xserver.3iliconG: 3201:42903(1092) ack 581 win 4806
Xclient.Sun » Xserver.SiliconG: 4293:4207(4) ack 581 win 4098
Xgerver.8iliconG > Xclient.Sun: rck 4287 win 16384
Xserver.8iliconG > Xeclient.Sun: 581:818(32) ack 4297 win 16384
Xclient.Sun > Xperver.SiliconG: . ack 813 win 48896

b le- I

L+ I

e XDraowlines: Draws a series of lines joined end-to-end.

Synopasis :

XDrawLinea (display, drawable, gc, points, npoints, mode)

Display *display;
Drawable drawable;
GC ge;

Xpoints *points;
int npoints;

int mode;

Arguments

o display Specifies a connection to an X server; returned from
XOpenDisplay.

o drawable Specifies the drawable (e.g., window).

o g¢ Specifies the graphics context.

X Requests synopsis and Raw Data

o points specifies a pointer to an array of XPoint structures contain-

ing the positions of the points.

o npoints Specifies the number of points in the array, (npoionts=

1000).

o mode Specifies the coordinate mode.

Experimental Data:

B-11

XDrawlines ()

> Xserver.SiliconG:
> Xserver.S8iliconG:

Xclient.Sun
Xeclient.Sun

Xclient.Sun > Xgerver.S5iliconG:

Xclient.Sun > Xserver.SiliconG: P
Xclient.Sun > Xserver.SiliconG: P
Yserver.SiliconG > Xclient.Sum: .
Xserver.S5iliconG > Xclient.Sun: P

281:1741(1488) ack 581 win 4808
1741:3201(1488) ack 681 win 4298
3201:4287 (1998) ack 5Bl win 4298
4297:4381(4) ack 6Bl win 4288
ack 43081 win 16384

581:818(32) ack 43P1 win 18384
ack 813 win 4896

o XLoadQueryFont: loads a font and fill information structure.

Synopsis

Display »display;
char sname;

XFontStruect «XLoadQueryFont (diplay, name)

Arguments
o display Specifies a connection to an X server; returned from
XOpenDisplay.
o name Specifies the name of the font, (name = ”6x137).

Experimental Data:

XLoadQueryFont ()

Xelient.Sun > Xserver.SiliceonG: P
Xserver.SiliconG > Xclient.Sun:
Xserver.SiliconG > Xclient.Sun:
Xclient.San » Xserver.SiliconG:
Xclient.Sun > Xserver.S8iliconG: P
Xserver.SiljiconG > Xclient.Sun: P
Xclient.Sun » Xserver.S5iliconG:

P

281:285(24) ack 473 win 4998
473:1933(1460) ack 285 win 18384
1938:2237 (384) ack 285 win 18384
ack 2237 win 49086

285:289(4) ack 2237 win 4098
2287:2289(32) ack 289 win 18384
ack 2288 win 40886

B-12 X Requests synopsis and Raw Data

s XChangeGC: Changes the components of a given graphics context.

Synopasis

XChangeGC (dispiay, gc, valuemask, values)

Display =»display;

GG gc;

unsigned long valuemask;
IGCValues =»values;

Arguments

o display Specifies a connection to an X server; returned from
XOpenDisplay.

o gc Specifies the graphics context.

o valuemask Specifies the component in the graphics context to be
changed, { valuemask = GCFont).

o values Specifies a pointer to the XGCViaues structure.

Experimental Data:

XChangeGC()
Xclient.Sun > Xserver.SiliconG: P 289:320(28) ack 2381 win 4@58
Xserver.S3ilicon@ > Xclient.Sun: . ack 320 win 16364

Xgerver.SiliconG > Xclient.Sun: P 23081:2333(32) ack 329 win 16384
Yclient.Sun > Xserver.SiliconG: . ack 2333 win 4898

o XDrawString: Draw an 8-bit text string, foreground only.

Synopsis

XDrawString(display, drawable, gc, x, y, string, length)

Dieplay =display;
Drawable drawable;
GC ge;

int x, y;

Char +string;

int length;

X Requests synopsis and Raw Data

Arguments

(]

display Specifies a connection to an X server; returned from
XOpenDisplay.

drawable Specifies the drawable.
gc Specifies the graphics context.

z, y Specify the x and y coordinates of the baseline starting posi-
tion for the character, relative to the origin of the specified draw-
ahle.

string Specifies the character string.

length SPecifies the number of characters in string.

Experimental Data:

B-13

XDrawString()

Xclient.Sun > Xserver.Silicon@: P 3409:453(194) ack 2441 win 4008
Xgerver.SiliconG > Xclient.Sun: P 2441:2473(32) ack 4583 win 18384
Xclient.Sun > Xserver.SiliconG: . ack 2473 win 4896

o XFreeFont: Unloads a font and free storage for the font structure.

Synapsis

XFreeFont (display, font_struct)

Display »display;
XFont8truet *font_struct;

Arguments

Q

display Specifies a connection to an X server; returned from
XOpenDisplay.

o font_struct Specifies the storage associated with the font.

Experimental Data:

B-14 X Requesis synopsis and Raw Data

IFreeFfont ()

Xclieat.Sun > Xserver.SiliconG: P 473:486(12) ack 2565 win 4008
Agerver.SiliconG > Xclient.Sun: . ack 485 win 18372
Xserver.SiliconG » Xclient.Sun: P 2585:2637(32) ack 485 win 18384
Xclient.Sun > Xserver.SiliconG: . ack 2537 win 4088

o XCopyArea: Combines (copies) the specified rectangle of sr¢ with the
specified rectangie of dest. Both sre¢ and dest must have the same root
and depth.

Synopsis

XCopyArea(display, src, dat, ge, srec_x, srec_y, width, height,
dest_x, dest_y);

Display *diaplay;

Drawable src, dest;

GC gej;

int srec_x, sre y;

unsigoned int width, height;
int deet x, dest_y;

Arguments
o display Specifies a connection to an X server; returned f{rom

XOpenDhsplay.

o sre, dest Specify the source and destination rectangles to be com-
bined.

o gc¢ Specifies the graphics context.

o sre_z, sre_y Specify the x and y coordinates of the upper-left cor-
net of the source rectangie.

o width, height specify the dimension in pixels of both the source and
destination rectangles, (width—=height=100 pixels|).

o dest_r, dest y Specify the x and y coordinates within the destina-
tion window.

Experimental Data:

X Requests synopsis and Raw Data B-15

XCopyArea ()

Xclient.Sun » Xserver.SiliconG: P 6897:729(32) ack B13 win 4888
Xserver.SiliconG » Xclient.Sun: P 813:845(32) ack 726 win 18384
Xclient.Sun > Xserver.SiliconG: . ack 645 win 4998

e XPutlmage : Draws a section of an rectangle in a window or pixmap.

Synopsis

XPutImage (dieplay, drawable, gc, image, src_x, src_y, dst_x,
det_y, width, height)

Display »display;

Drawable drawahble;

GG ge;

XTmage *image;

int srec x, srec y;

int det _x, det y;

uneigned int width, height;

Arguments

o display Specifies a connection to an X server; returned from
XOpenDisplay.

o drawable Specifies the drawable.
o g¢ Specifies the graphics context.
o tmage Specifies the image to be combined with the rectangle.

o sre_z, src_y Specify the x and y coordinates of the upper-left
corner of the rectangle to be copied.

o dst_z, dst_y Specify the x and y coordinates relative to the origin
of the drawable, where the upper-left corner of the copied rectangle

will be place.

o width, height specify the width and height in pixels of the rectangle
area to be copied. (width=height=100 pixels|)).

Experimental Datas:

B-18

X Requests synopsia and Raw Data

XPutImage()

Xclient.Sun > Xserver.SiliconG:
Xclient.Sun » Iserver.SiliconG:
Xclient.Sun > Xserver.Silicon@:
Xserver.SiliconG > Xeclient.Sun:
Xclient.Sun > Xserver.SiliconG:
Iclient.Sun > Xserver.SiliconG:
Xelient.Sun > Xserver.SiliconG:
Xserver.S8iliconG > Xelient.Sun:
Xclient.Sun > Xserver.Silicon:
Xclient.Sun > Xserver.SilicenG:
Zclient.Sun » Xserver.SiliconG:
Xeserver.SiliconG » Xeclient.Sun:
Xclient.Sun > Xserver.SiliconG:

. ack 14885 win 18384
. 14B86:18325(1488) ack 368741 win 409

o -

1#769:12229 (146808) ack 368741 win 489
12229:13880(14688) ack 380741 win 409
1388%:14885 (1178} ack 3688741 win 489

16325:17785(1488) ack 368741 win 4&9
17786:18981(1178) ack 380741 win 4869
ack 18981 win 18384

18081 :28421 (1468} ack 368741 win 489
20421:28703(372) ack 388741 win 4098
20793:28767 (4) ack 388741 win 4098
368741:368773(33) ack 28787 win 1838
ack 388773 win 4896

s XGetImage: Dumps the contents of the specified rectangle, a drawable,

Synopeis

into a client-side X/mage structure, in the format specified.

XImage *XGetImage(display, drawable, x, y, width, height,
plane mask, format)

Display «display;
Drawable drawable;
iot x, ¥;

unsigned int width, height;
unsigned long plane_mask;

int format;

Arguments

o display Specifies a connection

XOpenDisplay.

o drawable Specifies the drawable.

to an X server; returned from

o z, y Specify the x and y coordinates of the upper-left corner of the

rectangle.

o wndth, height specify the width and height in pixels of the image,
(width=height—=100 pixels|).

o plane _mask Specifies a plane mask that indicates which planes are
represented in the image, (plane mask = "0).

<

format Specifies the format for the image, (format=ZPixmap).

X Requests synopsis and Raw Data B-17

Experimental Data:

XGetImage ()

Xclient.Sun > Xserver.SiliconG: P 721:741(28) ack 388877 win 4898
Xserver.S8iliconG » Xeclient.Sun: . 368877:382137 (1484) ack 741 win 1838
Xserver.3iliconG » Xclient.Sun: . 382137:3683597 (1468) ack 741 win 1838
XIclient.Sun > Xserver.SiliconG: . ack 383507 win 4808

Xserver.SiliconG > Xclient.Sun: . 383507:385857(1488) ack 741 win 1838
Xgerver.SiliconG > Xelient.Sun: . 3850857:3668517(1488) ack 741 win 1838
Xelient.Sun > Xserver.S8ilicenG: . ack 388517 win 4008

Xserver.SiliconG » Xclient.Sun: . 3868617:387977(1466) ack 741 win 1838
Xserver.Silicon@ > Xclient.Sun: . 387077:3069437(1468) ack 741 win 1838
Yelient.Sun > Xserver.SiliconG: . ack 3889437 win 4808
Xserver.SiliconG > Xclient.Sun: P 389437:378789(1272) ack 741 win 1838
Iclient.Sun > Xserver.SiliconG: P 741:746(4) ack 379789 win 4008
Xgerver.SiliconG > Xclient.Sun: P 378799:378741(32) ack 745 win 18384

Iclient.Sun > Xserver.SiliconG: . ack 378741 win 4896
.
XResize Window : Changes the inside dimension of the window. The
Synopsis

IResiseWindow (display, w, width, height)

Display =»display;
Window w;
Uneigned int width, height;

Arguments

o display Specifies a connection to an X server; returned from

XOpenihsplay.
o w Specifies the ID of the window to be resized.
o width, height Specify the new dimension of the window in pixels.

Experimental Data:

XResizseWindow()

Iclient.Sun > Xserver.SiliconG: P 488:493(24) mck 741 win 4868
Yserver.SiliconG > Xclient.Sun: P 741:773(32) ack 493 win 18384
Xeclient.Sun > Xserver.SiliconG: . ack 773 win 4896

B-18 X Requests synopsis and Raw Data

s XMove Windowr Changes the position of the origin of the specified win-
dow relative to its parent.

Synopsis

X¥oveWindow (display, w, x, ¥)

Diesplay =display;
Window w;
int x,¥;

Arguments

o display Specifies a connection to an X server; returned from
XOpenDisplay.

o w Specifies the ID of the window to be moved.

o z, y Specify the new x, and y coordinates of the upper-ieft pixel of
the window’s border, relative to its parent.

Experimental Data:

XMoveWindow()

Xclient.Sun > Xserver.SiliconG: P 541:565(24) ack 837 win 4098
Xserver.SiliconG > Xclient.Sun: P 837:868(32) ack 586 win 16384
Xclient.Sun » Xserver.SiliconG: . ack 888 win 4998

Appendix C

X Requests Listings and Descriptions

This appendix provides a summary of X requests grouped by functionality.

Each X request is followed by a brief description, it opcode, number of data bytes
used, number of padding bytes used for alignment requirements, total length of the
request including the header, and its corresponding reply length.

Colors and Colormaps

AllocColor:

Description: Allocate a read-only colorcell specifying the
color with RGB values.

opcode:84
data:10
padding:2

tatal length:16
reply length:32

AllocColorCells:

Description: Allocate read/write colorcells. This request
does not set the colors of the allocated cells.

opcode:86

data:8

padding:0

total length:12

reply length: 32+4n+4m
n: number of pixels values
m: numer of masks values

AllocColorPlanes:

Deacription: Allocate read/write colorcells for overlays.
This request does not set the colors of the allocated cells.

opcode:B7
data:12
padding:0
total length:16
reply length:32+4n
n: number of pixels values

AllocNamedColor:

C-2 X Requests Listings and Descriptions

Description: Allocate a read-only colorcell specifying
the color with a color name,

opcode:85
data:8+n

n: length of string
padding:p
total length:12+n+p
reply length:32

CapyColormapAndFree:

Description: Copy into a new colormap the colorcells that one
client has allocated, and free these colorcells in the old
colormap.

opcode:30
data:8
padding:0

total length:12
reply length:0

CreateColormap:
Description: Create a virtual colormap.

opcode: T8
data:12
padding:0

total length:16
reply length:0

FreeColormap:
Description: Free a virtuai colormap.

opcode: 79
data:4
padding:0
total length:8
reply length:0

FreeColors:
Description: Deallocate colorcells.

opcode:38
data:8+4n
a: number of pixel values
padding:0
total length:12+4n
reply length:0

InstallColormap:

Descriptionr Copy a virtual colormep into the display
hardware, sothat it will actually be used to tranalate
pixel values.

opcode:81
data:4
padding:0
total length:8
reply length:0

ListinstalledColormaps:

X Requests Listings and Descriptions C-3

Deacription: List the [Ds of the colormaps installed in the
hardware.

opcode:83
data:4
padding:0
total length:8
reply length:32+4n
n: number of COLORMAPs

LookupColor:

Description: Return the RGB values associated with a color
name, and return the closest RGB values available on the
diaplay hardware.

opeode;92
data:8+n

n: fength of string
padding:p
total leagth:12+n+p
reply length:32

QueryColors:

Description: Return the colors in the specified ceiis of a
colormap.

opcode: 91
data:4+4n
n: number of pixel values
padding:0
total length:8-+4n
reply length:32+8n
n: number of RGBs in colors

StoreColors:

Description: Store colors into cells allocated by
AllocColorCells or AllocColorPlanes.

opcode:89
data:4+12n
n: number of COLORITEMs
padding:C
total length:8+12n
reply length:

StoreNamedColor:

Description: Store colors into cells allocated by
AllocColorCells or AllocColorPlanes.

opcode:30
data:12+n

n: string length
padding:p
total length:16+n-+p
reply length:0

UninstallColormap:

Description: Remove a virtual colormap from the display
hardware, 8o it will not be used to translate pixel values.

opcode:82

C-4 X Requests Listings and Descriptions

data:4
padding:0
total length:8
reply length:0

Cursors

CreateCursor:

Description: Create a curgor resource from characters in a
apecial cursor font.

opcode:83
data:28
padding:0

total length:32
reply length:0

CreateGlyphCursor:
Description: Create a cursor from characters in any font.

opecode:94
data:28
padding:0
total length:32
reply length:0

FreeCursor:
Description: Destroy a curser resource.

opcode:95
data:4
padding:0
total length:8
repiy length:0

RecolorCursor:

Description: Change the foreground and bhackground colors of a
CUrsor.

apcode:96
data:16
padding:0

total length:20
reply length:0

Drawing Graphics

ClearArea:
Description: Clear an area of a window.

opcode:61
data:12
padding:0

total length:16
reply length:0

CopyArea:

X Regquests Listings and Descriptions C-5

Deacription: Copy an area of a window to another area in the
same or a different window. I[f the scurce area is obscured,
this request will generate a GraphicsExpose event to identify
the area of the destination for which the source is not
available.

opcode:62
data:24
padding:0

total length:28
reply length:0

CopyPlane:

FillPoly:

PolyAre:

Description: Copy a single plane of one drawable into any
number of planes of another, applying two pixel values to
translate the depth of the single plane.

opcode:63
data:28
padding:0

total length:32
reply lengih:0

Description: Fill a polygon, without drawing the complete
outline.

opcode:69
data:12+4n
a: number of points
padding:0
total length:16+4n
reply lengih:0

Description: Draw one or more arcs, each of which is a
partial ellipse aligned with the x and y axis.

opcode:68
data:8+12a
n: oumber of ARCs
padding:0
total length:12+12n
reply length:0

PolyFillArc:

Description: Fill one or more arcs, without drawing the arc
itsell.
opcode:71
data:8+12n
n: number of ARCs
padding:0

total length:12+12n
reply length:0

PolyFillRectangle:

Description: Fill one or more rectangles, without drawing the
entire outline.

opcade: 70

C-6 X Requests Listings and Descriptions

data:8+8n
n: number of RECTANGLEs
padding:0
total length:12+8n
reply length:0

PolyLine:

Description: Draw one or more conmected lines,

opcode:65
data:8+4n
n: number of POINTs
padding:0
total length:12+4-4n
raply length:0

PolyPoint:
Description: Draw one or more points.

opcode:64
data:8+4n
n: number of points
padding:0
total length:12+4n
reply length:0

PolyRectangle:
Description: Draw one or more rectangles.

opcode:67
data:8+8n
n: number of RECTANGLEs
padding:0
total length:124+8n
reply length:0

PolySegment:

Description: Draw one or more disconnected lines.

opcode:66
data:84+8n
n: number of SEGMENTSs
padding:0
total length:12+8n
reply length:0

Events

GetlnputFocus:

Description: Return the current keyboard focus window.

opcode:43
data:0
padding:0

total length:4
reply length:32

GetMotionEvents:

X Requests Listings and Descriptions

Description: Some servers are equipped with a buffer
that recotds the position history of the pointer. This
request will return segments of this history for selected
time periods.

opcode:39
data:12
padding:0
total length:16
reply length:32+4-8n
n: number of TIMECOORD

SetInputFocun:

Desacription: Set a window and its descendants to recieve all
keyboard input.

opcode:43
data:0
padding:0

total length:4
reply length:32

Fonts and Text

CloseFont:

Description: Disclaim interest in a particular font. If
this is the last client to be using the apecified font,
the font is unloaded.

opcode:46
data:4
padding:0
total length:8
reply length:0

GetFontPath:

Description: Get the path that the server uses to search for
fonts.

opcode:52

data:0

padding:0

total length:4

reply length:32+n+p
n: number of STR
p: padding

ImageTextd:

Desacription: Draw text string in 8-bit fon{. The bounding
rectangie of the string is drawn in the background color
from the GC before the text is drawn.

opcode:7T6
data:i2+n

o: length of string
padding:p
total length:16+n+p
reply length:0

ImageText16:

Description: Draw text string in 18-bit font, The bounding

C-8 X Requests Listings and Descriptions

rectangle of the string is drawn in the background color from
the GC before the text is drawn.

opcode: 77T
data:12+42n
n: number of 2-byte characters
padding:p
total length:16+2n+p
reply length:0

ListFontas:
Description: List the fonts available on a server.

opcode: 49
data:4+n
n: length of pattern
padding:p
total length:8+n+p
reply length:32+n+p
n: number of names

ListFontsWithlnfo:

Description: List the fonts available on a server, with
information about each font.

opcode:50
data:4+n
n: length of pattern

padding:p

total length:8+n+p

reply length:324+28+4m+n+p
m: number of FONTPROPS in properties
n: length of name in bytes

OpenFont:

Description: Load a font for drawing. If the font has already
been loaded, this request simply returns the [D.

apcode:d5

data:8-+n

padding:p

total length:124+n+p
reply length:0

PolyTexts:

Deacription: Draw text items using 8-bit fonts. FEach item can
specify a string, a font, and a horizontal offset.

opcode: T4

data:12+n

padding:p

total length:16+n+p
reply length:0

PolyText16:

Description: Draw text items using 16-bit fonts. FEach item can
specify a string, a font, and a horizontal offget.

opcode:75
data:12+n
padding:p

X Requests Listings and Descriptions C-9

total length:16+n+p
reply length:0

QueryFont:

Description: Get the table of information describing a font
and each character in it.

opcode:47

data:l

padding:0

total length:8

reply length:32+28+8n+12m
n: numbber of FONTPROPs in properties
m: number of CHARINFOs

QueryTextExtents:

Description: Calculate the width of a string in a current font.

opcode:48
data:4+2n

n: length of string
padding:p
total length:8+2n+p
reply length:32

SetFontPath:

Description: Set the path that the server uses to search for
fonts.

opcode:51
data:4+n

n: path length
padding:p
total length:8+n+p
reply length:0

The Graphics Context

ChangeGC:

CopyGC:

Description: Change any or all characteristics of an existing GC.

opcode:56
data:8+4n
n: number of values
padding:0
total length:12+4n
reply length:0

Description: Copy any or all characteristics of one GC into
another.

opcode:57
data:l2
padding:0

total length:16
reply length:0

CreateGC:

C-10 X Requests Listings and Deacriptions

Description: Create a graphics context, and opitionally set
any or all of its characteristics. [f not set, each
characteristic has a reasonable default.

opcode:hi
data:12+4n
n: number of values
padding:0
total length:16+4n
reply length:0

FreeGC:
Description: Free the memory in the server associated with a GC,

opcode:60
data:4
padding:0
total length:8
reply lengih:©

SetClipRectangles:

Description: Set the clip region of a GC to the union of a set
of rectangies.

opcode: 539
data:8+8n
n: number of RECTANGLEs
padding:0
total length:12+8n
reply length:0

SetDashes:

Drencription: Set the dash pattern for lines, in a more
powerful way than is poseible using CreateGC or ChangeGC.

opcode:38
data:8+n

n:length of dashes
padding:p
total length:12+n+p
reply length:0

Images

Getlmage:

Description: Place an image from a drawable into a
representation in memory.

opcode: 73
data:16
padding:0
total length:20
reply length:32-+n-+p
a: number of bytes

Putlmage:
Deacription: Dump an image into a drawable.

opcode: 72

X Requests Listings and Descriptions C-11

data:20+n

n: number of bytes
padding:p
total length:24+n+p
reply length:0

Interclient Communication

ChangeProperty:
Description: Set the value of a property.

opcode: 18
data:20+n

n: number of bytes
padding:p
total length:24-+n+p
reply leagth:0

ConvertSelection:

Description: Request that the owner of a particular selection
convert it to a particular format, then send an event
informing the requestor of the conversion's success and the
name of the property containing the resuit.

opcode:24
data:20
padding:0

total length:24
reply leagth:0

DeleteProperty:

Description: Delete the data associated with a particular
property on a particular window.

opcode:19
data:8
padding:0

total length:12
reply length:0

GetAtomName:
Description: Get the string name of a property given its ID.

opcode:17
data:4
padding:(
total length:8
reply length:32+n+p
n: length of name

GetProperty:
Description: Get the value of a property.

opcode:20
data:20
padding:0
total length:24
reply length:32+n+p
n: number of bytes

C-12 X Requests Listings and Descriptions

GetSelectionOwner:

Desacription: Get the current owner of a particular selection
property.

opcode:23
data:4
padding:0

total length:8
reply length:32

InternAtom:

Description: Get the ID of a property given its string name, and
optionally create the ID if no property with the specified name
exista.

opcode:16
data:4+n

n: length of name
padding:p
total length:8-+n-+p
reply length:32

ListHoste:

Description: Obtain a list of hosts having access to a diaplay.

opcode:110
data:0
padding:0
total length:4
reply length:32+n
n: number of hosis

ListProperties:
Description: List the IDs of the current lisi of properties.

opcoade: 21
data:4
padding:0
total length:8
reply length:32+4n
n: number of ATOMs

RotateProperties:
Description: Rotate the values of a list of properties.

opcode:l 14
data:8+4n
n: number of ATCMs
padding:0
total length:12+4n
reply length:0

SetSelectionOwner;

Description: Set a window as the current owner of a particular
selection property.

opcode:22
data:12
padding:0

total length:16

X Requests Listings and Descriptions

reply length:0

Keyboard and Pointer

AllowEventa:

Bell:

Deacription: Release events queued in the server due to grabs with

certain parameters.

opcode:35
data:4
padding:0
total length:8
reply lengih:0

Description: Ring the keyboard bell.
opcode: 104

data:0

padding:0

total length:4

reply length:0

ChangeActivePointerGrab:

Description: Change the events that are sent to a window

that has grabbed the pointer or keyboard.

opcode:30
data:12
padding:0

total length:16
reply length:0

ChangeKeyboardControl:

Deacription: Change personal preference features of the
keyboard such as click and auto-repeat.

opcode:102
data:4+4n
n: number of VALUEs
padding:0
total length:8+4n
reply length:0

ChangeKeyboardMapping:

Description: Change the keyboard mapping seen by all
clients.

opcode: 100
data:4+4nm
n: keycode-count
m: keysyms-per-keycode
padding:0
total length:8-+nm
reply length:0

ChangePointerControl:

Description: Change personal preference features of the
pointer, such ag acceleration (the ratic of the amount

the physical mouse is moved to the amount the cursor moves

C-13

C-14 X Requests Listings and Descriptions

on the screenj.

opcode:105
data:8
padding:0

total leagth:12
reply length:0

GetKevboardControl:

Description: Get personal preference features of the keyboard
such as click and auto-repeat.

opcode:103

data:0

padding:0

total length:4
reply length:32+20

GetKeyboardMapping:
Description: Return the keyboard mapping seen by all clients.

opcode:101
data:4
padding:0
total length:8
reply length:32+4nm
nm: number of KEYSYMs

GetModifierMapping:

Description: Get the mapping of physical keys to logical
madifiers.

opcode: 119
data:0
padding:0
total length:4
reply length:32+48n
n: number of keycodes

GetPointerControl:
Description: Return personal preference features of the pointer.

opcode:106
data:0
padding:0

total length:4
reply length:32

GetPointerMapping:

Description: Get the mapping of physical buttons to logical
buttons.

opcode:117
data:0
padding:0
total length:4
reply length:32+n+p
n: number of MAPs

GrabButton:

X Requests Listings and Descriptions C-15

Description: For all pointer events (button presses and
matien) occurring while the specified combination of buttons
and modifier keys are pressed, declare that these pointer
events will be delivered to a particular window regardless of
the pointer's location on the screen.

opcode: 28
data:20
padding:0

total length:24
reply length:0

GrabKey:

Description: For all keyboard events occurring while the
specified combination of buttons and modifier keys are pressed,
declare thatthese keyboard events will be delivered to a
particular window regardless of the pointer's location on

the screen.

opcode:33
data:12
padding:0

total length:16
reply length:0

GrabKeyboard:

Desacription: Declare that all keyboard events will be
delivered to a particular window regardless of the pointer’s
location on the screen.

opcode:31
data:12
padding:0

total length:16
reply length:32

GrabPointer:

Description: Declare that all pointer events {button presses and
motion) will be delivered to a particular window regardless of the
pointer's location on the screen.

opecode:26
data:20
padding:0

total length:24
reply length:32

QueryKeymap:
Description: Get the current state of the entire keyboard.
opcode:44
data:0
padding:0
total length:4
reply length:32+8
QueryPointer:

Description: Get the current pointer position.

opcode:38
data:0

C-16 X Requests Listings and Descriptions

padding:H
total length:4
reply length:32

SetModifierMapping:

Description: Set the mapping of physical keys to logical
modifiers such as Shift and Control.

opcode:118
data:8n
n: number of KEYCODEs
padding:0
total length:4+8n
reply length:32

SetPointerMapping:

Description: Set the mapping of physical buttons to logical
buttons.

opeade:116
data:n
n: number of MAPs
padding:p
total length:44+n+p
reply length:32

UngrabButton:
Deacription: Release a grab on a button.

opcode:29
data:8
padding:0
total length:12
reply length:0

UngrabKey:
Description: Release a grab on a button.

opcode:34
data:8
padding:0

total length:12
reply length:0

UngrabKeyboard:
Description: Release a grab on the keyboard.

opcode:32
data:4
padding:0
total length:8
reply length:0

EngrabPointer:
Description: Release a grab on the pointer.
opcode:27
data:4

padding:0
total length:8

X Requests Listings and Descriptions C-17

reply length:0
WarpPointer:
Description: Move the pointer.

opcode:4l
data:20
padding:0

total length:24
reply length:0

Security
ChangeHosts:

Description: Modify the list of hosts that are allowed
access to A server.

opcode: 109
data:4+n
n: number of addresses
padding:p
total length:8+n+p
reply length:0

SetAccessControl:

Description: Turn on or off the mechanism that checks the host
access list before allowing a connection.

opcode:111
data:0
padding:0
total length:4
reply length:0

WindowCharacteristics

ChangeWindowAttributes:

Description: Set any or all window attributes. For a
brief description of the window attributes.

opcade:2
data:8-+-4n
n: number of VALUEs
padding:0
total length:12+4n
reply length:0

GetGeometry:

Description: Return the position, dimensions, border width,
and depth of a window; return the ID of the root window at
the top of the window's hierarchy.

opcode:14
data:4
padding:0

total length:8
reply length:32

GetWindowAttributes:

C-18 X Requests Listings and Descriptions

Description: Get the current values of some of the window
attributes described for ChangeWindowAttributes; also find

out the characteristice of the window that were set when

it was created (InputOnly or InputQutput, and visual], whether
its colormap is installed and whether it i3 mapped or viewable.

opcode:3

data:4

padding:0

total length:8
reply length:32+12

Window Manipulation by the Client

CreateWindow:
Description: Create a window.

opeode:l
data:28+4n
n: number of VALUEs
padding:0
total length:324+4n
reply length:0

DestroySubwindows:
Description: Destroy an entire hierarchy of windows.

opcode:5
data:4
padding:0
total length:8
reply length:0

DestroyWindow:

Description: Destroys a window.
opcode:4

data:4

padding:0

total length:8

reply length:0

MapSubwindows:
Description: Map all subwindows of a window.

opcode: 9
data:4
padding:0
total length:8
reply length:0

MapWindow:
Description: Mark a window as eligible for display.
opcode:8
data:4
padding:0
total length:3 .
reply length:0

UnmapSubwindows:

X Requests Listings and Descriptions C-19

Description: Remove all subwindows of a window, but not the
window itzself, from the screen.

opcode:11
data:4
padding:0
total length:8
reply length:0

UnmapWindow:

Description: Remove a window and all its subwindows from the
screen,

opcode:10
data:4
padding:0
total length:8
reply length:0

Window_Manipulation by the Window Manager

ChangeSaveSet:

Description: Add or remove windows from a save-set.

opcode:6
data:4d
padding:0
total length:8
reply length:0

CirculateWindow:

Description: Lower the highest window on the screen or raise the
lowest one, depending on the parameters of this request.

opcode:13
data:4
padding:0
total length:8
reply length:0

ConfigureWindow:

Description: Allow the window manager to move, resize,
change the border width, or change the atacking order
of a window,

opcode:12
data:8+4n
n: number of VALUEs
padding:0
total length:12+44n
reply length:0

QueryTres:

Description: Allow the window manager to get the window
IDs of windows it did not create.

opcode:15
data:4
padding:0

C-20 X Requests Listings and Descriptions

total length:8
reply length:32+4n
n: number of WINDOWa in children

ReparentWindow:

Description: Allow the window manager to change the window
hierarchy to insert a frame window between each top-level

window on the screen and the root window. The window manager
can the decorate this frame window with a title for the
application, buttons for moving and resizing the window, ete.

opcode:7
data:l2
padding:0

total length:16
reply length:0

CreatePixmap:
Dencription: Create an oif-screen drawable.

opcode:53
data:12
padding:0

total length:16
reply length:0

ForceScreenSaver:
Description: Activate or reset the screen saver,

opcode:115
data:0
padding:0
total length:4
reply length:0

FreePixmap:

Description: Free the memory associated with an off-screen
deawable.

opcode:54 -
data:4

padding:0

total length:8

reply length:0

GetScreenSaven:

Description: Get the characteristiecs of the mechanism
the blanks the screen after an idle period.

opcode:108
data:0
padding:0

total length:4
reply length:32

GrabServer:

Description: Imitiate a state where requests only from a
single clien{ will be acted upon. The server will queue
everts for other clients and trequests made by other clients
until the grab is releasad.

X Requests Listings and Descriptions C-21

opcode:36
data:0
padding:0
total length:4
reply length:0

KillCliens:

Description: After a client exits because of the SetCloseDownMode
requeat, kill the resources that remain alive.

opeode; 113
data:4
padding:0
total length:8
reply length:0

ListExtensions:
Description: List the extensions avaiiable on the server.

opcode:99
data:0
padding:0
total length:4
reply length:32+n+p
n: length of list of names

NoQperation:

Description: The minimum request, it contains only the opcode and
request length.

opcode:127
data:0
padding:0
total length:4
reply length:0

QueryBestSize:

Description: Query the server for the fastest size for creating
tilea or stipples or the iargeat support size for cursors.

opcode:97
data:8
padding:0

total length:12
reply length:32

QueryExtension:

Description: Determine whether a certain extension is available in
the server.

opcade:98
data:4+n

n: length of name
padding:p
total length:8+n+p
reply length:32

SendEvent:

Description: Send any type of event to a particular window.

C-22 X Requests Listings and Descriptions

opcode:25
data:40
padding:0

total length:44
reply length:0

SetCloseDownMode:

Description: Determine whether resources created by a
client are preserved after the client exita. Normally,
they are not, but if the client can reclaim its resources
in a later incarnation, the client can use this request.

opcode:112
data:0
padding:0
total length:4
reply length:0

SetScreenSaver:

Description: Set characteristics that blank the screem after an
idle period.

opcode: 107
data:8
padding:0
total length:12
reply length:0

TranslateCoordinates:

Description: Translate coordinates from a window frame of
reference to a screen frame of reference.

opcode:40
data:12
padding:0

total length:1é
reply tength:32

UngrabServer:

Description: Release the grab on the server, process all
outstanding requests, and send all queued events.

opcode:37
data:120
padding:0
total length:4
reply length:Q

Appendix D

Listing of X Requets with Replies

This appendix provides a summary of X requests that have replies.

s AllocColor

¢ GetAtomName

» GetGeometry

¢ Getlmage

e GetKeyboardControl
s GetKeyboardMapping
» GetModifierMapping
» GetMotionEvents

e GetPointerControl

» GetPointerMapping

s GetProperty

» GetScreenSaver

s GetSelectionOwner

¢ GetWindowAttributes
+ GrabKeyboard

s GrabPointer

e InternAtom

+ ListExtensions

ListFonts

ListHosts
ListInstalledCollormaps
ListProperties
LockupColor
QueryBestSize
QueryColors
QueryExtensions
QueryFonts
QueryKeymap
QueryPointer
QueryTextExtents
QueryTree
SetModifierMapping
SetPointerMapping

TranslateCoordinates

Listing of X Requets with Replies

Appendix E

X Events

The following is a listing of all event types, what they signify, and any special
notes about how they are selected.

ButtonPress, ButtonRelease

A pointer button was press or released. These events include the pointer position
and the state of the modifier keys on the keyboard (such as shift).

CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify, MapNotify,
UnmapNotify

This event is generated when one of these requests is actually made on a window.
These are used to tell a client when some other client has manipulated a window.
Usually this other client is the window manager. All these events and
GravityNotify and ReparentNotify can only be selected together.

CirculateRequest, ConfigureRequest, MapRequest, ResizeRequest

These events are selected by the window manager to enforce its window manage-
ment policy. Once selected by the window manager, any request to resize, remap,
reconfigure, or circulate the window by any client other than the window manager
will not be acted on by the server but instead will result in one of these events
being sent to the window manager. The window manager then can decide whether
to allow, modify, or deny the parameters of the request given in the event and
then reissue the request to the server.

ClientMeasage

These events, or any other type, can be sent from one client to another using the
SentEvent request. This event type is for client-specific information.

ColormapNotify

This event tells a client when a colormap has been modified or when it is installed
or unistalled from the hardware colormap.

EnterNotify, LeaveNotify

E-2 X Events

The pointer entered or left a window. These events are generated even for each
window not visible on the screen that is an_ancestor of the orgin or destination
window.

Expose

Expose envents signify that a section of a window has become visible and should
be drawn by the client.

Focusln, FocusOut

The keyboard focus window has been changed. Like EnterNotify and
LeaveNotify, these events can be generated even for invisible windows.

GraphicsExpose, NoExpose

GraphicsExpose and NoExpose are generated only as the result of CopyArea
and CopyPlane requests. If the source area specified in either request is unavail-
able, one or more GraphicsExpose events are generated, and they specify the area
of destination that could not be drawn. If the source area was available, a single
NoExpose event is generated. GraphicsExpose and NoExpose events are not selected
normaly but instead are turned on or off by a member of the graphics context.

GravityNotify

This event notifies a client when a window has been moved in relation to its
parent because of its window gravity attribute. This window attribute is designed
to alllow automatic positioning of subwindows in certain simple cases when the
parent is resized.

KeymapNotify

Always following EnterNotify or Focusln, KeymapNotify gives the complete status
of all the keys on the keyboard.

KeyPress, KeyRelease

A keyboard key was pressed or released. Even the Shift and Control keys generate
these events. Thereis no way to select just the events on a particular keys.

MappingNotify

The pointer moved. MotionNotify events can be selected such that they are
deliverd only when certain button are pressed or regardless of the pointer buttons.

PropertyNotify

This event is issued whenever a client changes or deletes a propert, even if the
change is to replace data with identical data.

SelectionClear, SelectionNotify, SelectionRequest

These three events are used in the selection method of communicating between
clients. These events are not selected, but are always generated by the requests in-
volved in the selection procedures.

X Events E-3

VisibilityNotify

This event is generated when a window changes from fully obscured, partially
obscured, or unobscured to any other of these states and also when this window
becomes viewable.

This Page Intentionally Left Blank

Appendix F

X Errors

The following error codes can be return by the various requests.

Access:

An attempt is made to grab a key/button combination already grabbed by another
client.

An attempt is made to free a color map entry not allocated by the ciient.
An attempt is made to store into a read-only or an unallocated colormap entry.

An attempt is made to modify the access control list from other than the local
host (or otherwise authorized client).

An attempt is made to select an event type that only one client can select at a
time when another client has already selected it.

Alloc:

The server failed to allocate the requested resource.

Atom:

A value for an ATOM argument does not name a defined ATOM.
Colormap:

A value for a COLORMAP argument does not name a defined COLORMAP.,
Cursor:

A value for a CURSOR argument does not name a defined CURSOR.

Drawable:

A value for a DRAWABLE argument does not name a defined WINDOW or PIX-
MAP.

Font:

A value for a FONT argument does not name a define FONT.

r-2 X Errors

A value for a FONTABLE argument does not name a defined FONT or a defined
GCONTEXT.

GCONTEXT:
A value for a GCONTEXT argument does not name a defined GCONTEXT.
Implementation:

The server does not implement some aspect of the request. A server that generates
this error for a core request is deficient.

Length:

The length of a request is shorter or longer than that required to minimally con-

tain the arguments.

The length of a request exceeds the maximum length accepted by the server.
Match:

An InputOnly window is used as a drawable.

In a graphic request, the GCONTEXT argument does not have the same root and
depth as the destination DRAWABLE argument.

Some argument has the correct type and range, but it fails to match in some
other way required by the request.

Name:

A font or color of the specified name does not exist.

Pixmap:

A value for a PIXMAP argument does not name a defined PIXMAP.
Request:

The major or minor opcode does not specify a valid request.

Value:

Some numeric value falls outside the range of values accepted by the request. Un-
less a specified range is specified for an argument, the full range defined by the
argument’s type is accepted.

Window:

A value for a WINDOW argument does not name a defined WINDOW.

